Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Molecular link between diabetes and cancer described

The fact that diabetes raises the risk of certain types of cancer is already well known, but the reasons have been unclear. Now researchers at Lund University in Sweden have mapped a molecular link that explains the connection between the two widespread diseases.

Developing type 2 diabetes is a lengthy process. An early sign that it has begun is high levels of insulin in the blood. As long as the insulin-producing beta cells are able to compensate for the increased demand, for example when the individual is overweight, the blood sugar levels remain normal. It is not until the capacity for insulin secretion falls below the level needed that type 2 diabetes becomes a fact. The latter stage generally goes quickly, as the stressed beta cells work themselves to death.

“We have worked with the most well-known risk gene for type 2 diabetes, a variant of the TCF gene, and have studied its function in the beta cells”, says Yuedan Zhou, a doctoral student at the Lund University Diabetes Centre and principal author of the published study.

The risk variant of TCF is common, 25 per cent of the population carry it and 31 per cent of diabetics, according to figures from the Malmö Preventive Project population survey.

An equally well-established risk gene in cancer research is p53. The gene has been called the “protector of the genome” because it prevents the uncontrolled cell division that takes place in cancer. The p53 gene has been linked to protection against colon and liver cancer, among others.

“The function of the TCF gene in the beta cells is to protect the cells against high, stressful blood sugar levels. If that function fails, the beta cells die, which leads to diabetes”, says Ola Hansson, researcher and principal author of the survey.

The two genes work in concert, TCF protects against cell death, while p53 prevents excessive cell division.

“It is here that the connection between diabetes and cancer arises. When the blood sugar levels are high, the TCF gene is activated and this impedes the activity of the p53 gene thereby protecting the beta cells from cell death”.

The research group began working with the TCF gene two years ago to understand its role in insulin production. The discovery of the link with p53 and cancer was mostly by chance.

“Or good intuition”, they say.

The mapping of the TCF gene is continuing, this time in collaboration with the European Bioinformatics Institute in Cambridge.

Cancer researchers are working to try and influence p53 so that its tumour-preventing function is restored.

“In a similar way, strengthening the protective function of TCF against beta cell death in connection with high blood sugar would work as a drug for type 2 diabetes, or as a treatment before the disease has even developed fully”, says Ola Hansson.

Note: The full name of the risk variant is TCF7L2.

The study was published in the scientific journal Human Molecular Genetics.
Title: ‘Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway’
For more information, please contact Ola Hansson:
+46 40 39 12 28, +46 739 54 99 23

Megan Grindlay | idw
Further information:

Further reports about: Molecular Target TCF beta cells blood sugar cell death cell division type 2 diabetes

More articles from Life Sciences:

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

nachricht Researchers Discover New Anti-Cancer Protein
22.03.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Custom sequences for polymers using visible light

22.03.2018 | Materials Sciences

Scientists develop tiny tooth-mounted sensors that can track what you eat

22.03.2018 | Health and Medicine

Mat baits, hooks and destroys pollutants in water

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>