Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular link between diabetes and cancer described

15.11.2011
The fact that diabetes raises the risk of certain types of cancer is already well known, but the reasons have been unclear. Now researchers at Lund University in Sweden have mapped a molecular link that explains the connection between the two widespread diseases.

Developing type 2 diabetes is a lengthy process. An early sign that it has begun is high levels of insulin in the blood. As long as the insulin-producing beta cells are able to compensate for the increased demand, for example when the individual is overweight, the blood sugar levels remain normal. It is not until the capacity for insulin secretion falls below the level needed that type 2 diabetes becomes a fact. The latter stage generally goes quickly, as the stressed beta cells work themselves to death.

“We have worked with the most well-known risk gene for type 2 diabetes, a variant of the TCF gene, and have studied its function in the beta cells”, says Yuedan Zhou, a doctoral student at the Lund University Diabetes Centre and principal author of the published study.

The risk variant of TCF is common, 25 per cent of the population carry it and 31 per cent of diabetics, according to figures from the Malmö Preventive Project population survey.

An equally well-established risk gene in cancer research is p53. The gene has been called the “protector of the genome” because it prevents the uncontrolled cell division that takes place in cancer. The p53 gene has been linked to protection against colon and liver cancer, among others.

“The function of the TCF gene in the beta cells is to protect the cells against high, stressful blood sugar levels. If that function fails, the beta cells die, which leads to diabetes”, says Ola Hansson, researcher and principal author of the survey.

The two genes work in concert, TCF protects against cell death, while p53 prevents excessive cell division.

“It is here that the connection between diabetes and cancer arises. When the blood sugar levels are high, the TCF gene is activated and this impedes the activity of the p53 gene thereby protecting the beta cells from cell death”.

The research group began working with the TCF gene two years ago to understand its role in insulin production. The discovery of the link with p53 and cancer was mostly by chance.

“Or good intuition”, they say.

The mapping of the TCF gene is continuing, this time in collaboration with the European Bioinformatics Institute in Cambridge.

Cancer researchers are working to try and influence p53 so that its tumour-preventing function is restored.

“In a similar way, strengthening the protective function of TCF against beta cell death in connection with high blood sugar would work as a drug for type 2 diabetes, or as a treatment before the disease has even developed fully”, says Ola Hansson.

Note: The full name of the risk variant is TCF7L2.

Publication:
The study was published in the scientific journal Human Molecular Genetics.
Title: ‘Survival of pancreatic beta cells is partly controlled by a TCF7L2-p53-p53INP1-dependent pathway’
For more information, please contact Ola Hansson:
Ola.Hansson@med.lu.se
+46 40 39 12 28, +46 739 54 99 23

Megan Grindlay | idw
Further information:
http://www.lu.se

Further reports about: Molecular Target TCF beta cells blood sugar cell death cell division type 2 diabetes

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>