Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular footballs could revolutionize your next World Cup experience!

23.06.2014

This work focuses on the interactions between molecules and in particular on "amphiphilic" molecules, which contain two distinct parts to them. Household detergent is a good example of a product that relies on interacting amphiphilic molecules.

Detergent molecules comprise two distinct parts: one that prefers to form bonds with water (hydrophilic) and the other that likes oily substances (hydrophobic). Detergents are used for cleaning because when they are added to dirty water, they orient and assemble around oily dirt, forming small clusters that allow grease and dirt to be more easily removed from the water.

The newly reported method takes the concept of amphiphilic assembly one step further, and applies it to a completely new set of hydrophobic molecules, intriguingly with no water-loving part to them. These new "hydrophobic amphiphiles" still have different 'parts', but the assembly process relies on more subtle interactions.

The research was carried out by an international team of researchers led by Dr Martin Hollamby (Keele University, UK) and Dr Takashi Nakanishi (National Institute for Materials Science, Japan). Together they showed used neutron scattering techniques at the Institut Laue-Langevin (ILL) to investigate the arrangement of these clusters and showed that hydrophobic amphiphiles can still assemble into extended structures in much the same way as conventional amphiphiles.

One example is a molecule shaped like a football but with a long tail. The amphiphile has been tailor made from 'bucky balls' - football-shaped molecules made up of 60 carbon atoms (C60) which are chemically modified by attaching a much longer 'tail' made up of chains of carbon atoms, as found in a regular soap. The new detergents resemble "molecular tadpoles". When dissolved in solvents that interact with the tails, these molecules assemble to form a core of C60 spheres and a shell of carbon chains.

"Changing the chemistry of the chains can even lead to gels made of bundled C60 wires that have a measureable (photo)conductivity" explains Dr Martin Hollamby. "By adding pristine C60 in place of the solvent, we instead prepare a sheet-like material with totally different properties".

Small-angle neutron scattering data obtained on beamline D11 at the ILL was crucially used to prove the internal structure of these clusters.

"The light elements that makes up these 'molecular tadpoles' are easily located by neutrons" says Dr Isabelle Grillo, at the ILL. "Moreover, small angle neutron scattering which we use at the ILL allows to characterise the self-assembled systems from the nanometre scale to tenth of micrometres and is perfectly adapted to observe the coming together of the C60 footballs' into these beautiful core structures."

This flexibility is the remarkable thing about the new route towards self-organised structures. A great variety of different structures can be produced just by making small changes to the chemical structure and the additives (solvent or C¬60) used. This level of control over self-assembly in complex molecules such as C60 is unprecedented.

One area that could be significantly impacted by this new discovery is the field of 'molecular electronics'. These carbon-based electronics could provide a cheaper alternative to traditional silicon technology and allow for flexible handheld devices for many functions, including smartphones and tablets for watching TV.

Furthermore, the new molecular electronic components could lead to improved properties (e.g. higher efficiency, lower power consumption) simply by optimizing how the molecules interact with each other. In 2018 during the next World Cup in Russia you could be using football-shaped molecules to actually watch the football!

Martin Hollamby | eu
Further information:
http://www.ill.eu/

More articles from Life Sciences:

nachricht Building a better battery
29.06.2016 | Texas A&M University

nachricht New way out: Researchers show how stem cells exit bloodstream
29.06.2016 | North Carolina State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical lenses, hardly larger than a human hair

3D printing enables the smalles complex micro-objectives

3D printing revolutionized the manufacturing of complex shapes in the last few years. Using additive depositing of materials, where individual dots or lines...

Im Focus: Flexible OLED applications arrive

R2D2, a joint project to analyze and development high-TRL processes and technologies for manufacture of flexible organic light-emitting diodes (OLEDs) funded by the German Federal Ministry of Education and Research (BMBF) has been successfully completed.

In contrast to point light sources like LEDs made of inorganic semiconductor crystals, organic light-emitting diodes (OLEDs) are light-emitting surfaces. Their...

Im Focus: Unexpected flexibility found in odorant molecules

High resolution rotational spectroscopy reveals an unprecedented number of conformations of an odorant molecule – a new world record!

In a recent publication in the journal Physical Chemistry Chemical Physics, researchers from the Max Planck Institute for the Structure and Dynamics of Matter...

Im Focus: 3-D printing produces cartilage from strands of bioink

Strands of cow cartilage substitute for ink in a 3D bioprinting process that may one day create cartilage patches for worn out joints, according to a team of engineers. "Our goal is to create tissue that can be used to replace large amounts of worn out tissue or design patches," said Ibrahim T. Ozbolat, associate professor of engineering science and mechanics. "Those who have osteoarthritis in their joints suffer a lot. We need a new alternative treatment for this."

Cartilage is a good tissue to target for scale-up bioprinting because it is made up of only one cell type and has no blood vessels within the tissue. It is...

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Conference ‘GEO BON’ Wants to Close Knowledge Gaps in Global Biodiversity

28.06.2016 | Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

 
Latest News

Building a better battery

29.06.2016 | Life Sciences

New way out: Researchers show how stem cells exit bloodstream

29.06.2016 | Life Sciences

Crucial peatlands carbon-sink vulnerable to rising sea levels

29.06.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>