Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular footballs could revolutionize your next World Cup experience!

23.06.2014

This work focuses on the interactions between molecules and in particular on "amphiphilic" molecules, which contain two distinct parts to them. Household detergent is a good example of a product that relies on interacting amphiphilic molecules.

Detergent molecules comprise two distinct parts: one that prefers to form bonds with water (hydrophilic) and the other that likes oily substances (hydrophobic). Detergents are used for cleaning because when they are added to dirty water, they orient and assemble around oily dirt, forming small clusters that allow grease and dirt to be more easily removed from the water.

The newly reported method takes the concept of amphiphilic assembly one step further, and applies it to a completely new set of hydrophobic molecules, intriguingly with no water-loving part to them. These new "hydrophobic amphiphiles" still have different 'parts', but the assembly process relies on more subtle interactions.

The research was carried out by an international team of researchers led by Dr Martin Hollamby (Keele University, UK) and Dr Takashi Nakanishi (National Institute for Materials Science, Japan). Together they showed used neutron scattering techniques at the Institut Laue-Langevin (ILL) to investigate the arrangement of these clusters and showed that hydrophobic amphiphiles can still assemble into extended structures in much the same way as conventional amphiphiles.

One example is a molecule shaped like a football but with a long tail. The amphiphile has been tailor made from 'bucky balls' - football-shaped molecules made up of 60 carbon atoms (C60) which are chemically modified by attaching a much longer 'tail' made up of chains of carbon atoms, as found in a regular soap. The new detergents resemble "molecular tadpoles". When dissolved in solvents that interact with the tails, these molecules assemble to form a core of C60 spheres and a shell of carbon chains.

"Changing the chemistry of the chains can even lead to gels made of bundled C60 wires that have a measureable (photo)conductivity" explains Dr Martin Hollamby. "By adding pristine C60 in place of the solvent, we instead prepare a sheet-like material with totally different properties".

Small-angle neutron scattering data obtained on beamline D11 at the ILL was crucially used to prove the internal structure of these clusters.

"The light elements that makes up these 'molecular tadpoles' are easily located by neutrons" says Dr Isabelle Grillo, at the ILL. "Moreover, small angle neutron scattering which we use at the ILL allows to characterise the self-assembled systems from the nanometre scale to tenth of micrometres and is perfectly adapted to observe the coming together of the C60 footballs' into these beautiful core structures."

This flexibility is the remarkable thing about the new route towards self-organised structures. A great variety of different structures can be produced just by making small changes to the chemical structure and the additives (solvent or C¬60) used. This level of control over self-assembly in complex molecules such as C60 is unprecedented.

One area that could be significantly impacted by this new discovery is the field of 'molecular electronics'. These carbon-based electronics could provide a cheaper alternative to traditional silicon technology and allow for flexible handheld devices for many functions, including smartphones and tablets for watching TV.

Furthermore, the new molecular electronic components could lead to improved properties (e.g. higher efficiency, lower power consumption) simply by optimizing how the molecules interact with each other. In 2018 during the next World Cup in Russia you could be using football-shaped molecules to actually watch the football!

Martin Hollamby | eu
Further information:
http://www.ill.eu/

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>