Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular footballs could revolutionize your next World Cup experience!

23.06.2014

This work focuses on the interactions between molecules and in particular on "amphiphilic" molecules, which contain two distinct parts to them. Household detergent is a good example of a product that relies on interacting amphiphilic molecules.

Detergent molecules comprise two distinct parts: one that prefers to form bonds with water (hydrophilic) and the other that likes oily substances (hydrophobic). Detergents are used for cleaning because when they are added to dirty water, they orient and assemble around oily dirt, forming small clusters that allow grease and dirt to be more easily removed from the water.

The newly reported method takes the concept of amphiphilic assembly one step further, and applies it to a completely new set of hydrophobic molecules, intriguingly with no water-loving part to them. These new "hydrophobic amphiphiles" still have different 'parts', but the assembly process relies on more subtle interactions.

The research was carried out by an international team of researchers led by Dr Martin Hollamby (Keele University, UK) and Dr Takashi Nakanishi (National Institute for Materials Science, Japan). Together they showed used neutron scattering techniques at the Institut Laue-Langevin (ILL) to investigate the arrangement of these clusters and showed that hydrophobic amphiphiles can still assemble into extended structures in much the same way as conventional amphiphiles.

One example is a molecule shaped like a football but with a long tail. The amphiphile has been tailor made from 'bucky balls' - football-shaped molecules made up of 60 carbon atoms (C60) which are chemically modified by attaching a much longer 'tail' made up of chains of carbon atoms, as found in a regular soap. The new detergents resemble "molecular tadpoles". When dissolved in solvents that interact with the tails, these molecules assemble to form a core of C60 spheres and a shell of carbon chains.

"Changing the chemistry of the chains can even lead to gels made of bundled C60 wires that have a measureable (photo)conductivity" explains Dr Martin Hollamby. "By adding pristine C60 in place of the solvent, we instead prepare a sheet-like material with totally different properties".

Small-angle neutron scattering data obtained on beamline D11 at the ILL was crucially used to prove the internal structure of these clusters.

"The light elements that makes up these 'molecular tadpoles' are easily located by neutrons" says Dr Isabelle Grillo, at the ILL. "Moreover, small angle neutron scattering which we use at the ILL allows to characterise the self-assembled systems from the nanometre scale to tenth of micrometres and is perfectly adapted to observe the coming together of the C60 footballs' into these beautiful core structures."

This flexibility is the remarkable thing about the new route towards self-organised structures. A great variety of different structures can be produced just by making small changes to the chemical structure and the additives (solvent or C¬60) used. This level of control over self-assembly in complex molecules such as C60 is unprecedented.

One area that could be significantly impacted by this new discovery is the field of 'molecular electronics'. These carbon-based electronics could provide a cheaper alternative to traditional silicon technology and allow for flexible handheld devices for many functions, including smartphones and tablets for watching TV.

Furthermore, the new molecular electronic components could lead to improved properties (e.g. higher efficiency, lower power consumption) simply by optimizing how the molecules interact with each other. In 2018 during the next World Cup in Russia you could be using football-shaped molecules to actually watch the football!

Martin Hollamby | eu
Further information:
http://www.ill.eu/

More articles from Life Sciences:

nachricht Tracking the American Woodcock
28.07.2015 | University of Arkansas, Fayetteville

nachricht Possible Path Toward First Anti-MERS Drugs
28.07.2015 | American Crystallographic Association (ACA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>