Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for associating genetic variation with crop traits

23.07.2012
A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.

The technique, published in the journal Nature Biotechnology, links important agronomic traits in crop plants with active regions of the genome. Instead of requiring knowledge of the crop's complete genome, it identifies only expressed genes.

"For many crop plants, markers are still lacking because of the complexity of some plants' genomes and the very high costs involved," said Professor Ian Bancroft, who led the study at the John Innes Centre. "We have succeeded in developing markers based on the sequences of expressed genes, widening the possibilities for accelerated breeding through marker assisted selection."

Expressed genes are converted from genomic DNA to mRNA. Working with mRNA means that there is no need to generate a complete genome sequence from DNA, making the techniques applicable to a wide range of crops, even those with complex genomes, such as oilseed rape and wheat. It also enables the development of advanced marker resources for less studied crops that are important for developing countries or have specific medicinal or industrial properties.
The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Peter Werner of plant breeding company KWS UK Ltd and part of the research team said "KWS UK has been delighted to be involved with this ground breaking developmental research. We will be increasingly using this approach to further improve the speed and reliability of our breeding towards the continued improvement of yield and quality of our new varieties produced within the KWS group."

In partnership with the Cambridge-based bioinformatics company Eagle Genomics Ltd, the technology, called TraitTag, is being offered as a service to plant breeders. Markers associated with measured trait variation can be identified in essentially any crop species, including traits controlled at the level of gene expression variation rather than gene sequence variation, such as those with an epigenetic basis.

In an example of such an application, the researchers are now working with plant breeding company Limagrain to produce reliable markers for hybrid performance in oilseed rape. Marker-assisted breeding for this complex trait has previously been unsuccessful due to a lack of available markers and appropriate technology.

Using bioinformatics techniques it is possible to associate variation in both the sequences of expressed genes and their relative abundance in the mRNA with important traits, and then produce markers for these traits that breeders can use in their breeding programmes. Their research was published in the journal Nature Biotechnology and was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

nachricht Wintering ducks connect isolated wetlands by dispersing plant seeds
22.02.2017 | Utrecht University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Positrons as a new tool for lithium ion battery research: Holes in the electrode

22.02.2017 | Power and Electrical Engineering

New insights into the information processing of motor neurons

22.02.2017 | Life Sciences

Healthy Hiking in Smart Socks

22.02.2017 | Innovative Products

VideoLinks
B2B-VideoLinks
More VideoLinks >>>