Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for associating genetic variation with crop traits

23.07.2012
A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.

The technique, published in the journal Nature Biotechnology, links important agronomic traits in crop plants with active regions of the genome. Instead of requiring knowledge of the crop's complete genome, it identifies only expressed genes.

"For many crop plants, markers are still lacking because of the complexity of some plants' genomes and the very high costs involved," said Professor Ian Bancroft, who led the study at the John Innes Centre. "We have succeeded in developing markers based on the sequences of expressed genes, widening the possibilities for accelerated breeding through marker assisted selection."

Expressed genes are converted from genomic DNA to mRNA. Working with mRNA means that there is no need to generate a complete genome sequence from DNA, making the techniques applicable to a wide range of crops, even those with complex genomes, such as oilseed rape and wheat. It also enables the development of advanced marker resources for less studied crops that are important for developing countries or have specific medicinal or industrial properties.
The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Peter Werner of plant breeding company KWS UK Ltd and part of the research team said "KWS UK has been delighted to be involved with this ground breaking developmental research. We will be increasingly using this approach to further improve the speed and reliability of our breeding towards the continued improvement of yield and quality of our new varieties produced within the KWS group."

In partnership with the Cambridge-based bioinformatics company Eagle Genomics Ltd, the technology, called TraitTag, is being offered as a service to plant breeders. Markers associated with measured trait variation can be identified in essentially any crop species, including traits controlled at the level of gene expression variation rather than gene sequence variation, such as those with an epigenetic basis.

In an example of such an application, the researchers are now working with plant breeding company Limagrain to produce reliable markers for hybrid performance in oilseed rape. Marker-assisted breeding for this complex trait has previously been unsuccessful due to a lack of available markers and appropriate technology.

Using bioinformatics techniques it is possible to associate variation in both the sequences of expressed genes and their relative abundance in the mRNA with important traits, and then produce markers for these traits that breeders can use in their breeding programmes. Their research was published in the journal Nature Biotechnology and was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>