Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New method for associating genetic variation with crop traits

23.07.2012
A new technique will allow plant breeders to introduce valuable crop traits even without access to the full genome sequence of that crop.

The technique, published in the journal Nature Biotechnology, links important agronomic traits in crop plants with active regions of the genome. Instead of requiring knowledge of the crop's complete genome, it identifies only expressed genes.

"For many crop plants, markers are still lacking because of the complexity of some plants' genomes and the very high costs involved," said Professor Ian Bancroft, who led the study at the John Innes Centre. "We have succeeded in developing markers based on the sequences of expressed genes, widening the possibilities for accelerated breeding through marker assisted selection."

Expressed genes are converted from genomic DNA to mRNA. Working with mRNA means that there is no need to generate a complete genome sequence from DNA, making the techniques applicable to a wide range of crops, even those with complex genomes, such as oilseed rape and wheat. It also enables the development of advanced marker resources for less studied crops that are important for developing countries or have specific medicinal or industrial properties.
The research was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Peter Werner of plant breeding company KWS UK Ltd and part of the research team said "KWS UK has been delighted to be involved with this ground breaking developmental research. We will be increasingly using this approach to further improve the speed and reliability of our breeding towards the continued improvement of yield and quality of our new varieties produced within the KWS group."

In partnership with the Cambridge-based bioinformatics company Eagle Genomics Ltd, the technology, called TraitTag, is being offered as a service to plant breeders. Markers associated with measured trait variation can be identified in essentially any crop species, including traits controlled at the level of gene expression variation rather than gene sequence variation, such as those with an epigenetic basis.

In an example of such an application, the researchers are now working with plant breeding company Limagrain to produce reliable markers for hybrid performance in oilseed rape. Marker-assisted breeding for this complex trait has previously been unsuccessful due to a lack of available markers and appropriate technology.

Using bioinformatics techniques it is possible to associate variation in both the sequences of expressed genes and their relative abundance in the mRNA with important traits, and then produce markers for these traits that breeders can use in their breeding programmes. Their research was published in the journal Nature Biotechnology and was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the UK Department for Environment, Food and Rural Affairs (Defra).

Andrew Chapple | EurekAlert!
Further information:
http://www.nbi.ac.uk

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>