Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New membrane lipid measuring technique may help fight disease

11.10.2011
Could controlling cell-membrane fat play a key role in turning off disease?

Researchers at the University of Illinois at Chicago think so, and a biosensor they've created that measures membrane lipid levels may open up new pathways to disease treatment.

Wonhwa Cho, distinguished professor of chemistry, and his coworkers engineered a way to modify proteins to fluoresce and act as sensors for lipid levels.

Their findings are reported in Nature Chemistry, online on Oct. 9.

"Lipid molecules on cell membranes can act as switches that turn on or off protein-protein interactions affecting all cellular processes, including those associated with disease," says Cho. "While the exact mechanism is still unknown, our hypothesis is that lipid molecules serve sort of like a sliding switch."

Cho said once lipid concentrations reach a certain threshold, they trigger reactions, including disease-fighting immune responses. Quantifying lipid membrane concentration in a living cell and studying its location in real time can provide a powerful tool for understanding and developing new ways to combat a range of maladies from inflammation, cancer and diabetes to metabolic diseases.

"It's not just the presence of lipid, but the number of lipid molecules that are important for turning on and off biological activity," said Cho.

While visualizing lipid molecules with fluorescent proteins isn't new, Cho's technique allows quantification by using a hybrid protein molecule that fluoresces only when it binds specific lipids. His lab worked with a lipid known as PIP2 -- an important fat molecule involved in many cellular processes. Cho's sensor binds to PIP2 and gives a clear signal that can be quantified through a fluorescent microscope.

The result is the first successful quantification of membrane lipids in a living cell in real time.

"We had to engineer the protein in such a way to make it very stable, behave well, and specifically recognizes a particular lipid," Cho said. He has been working on the technique for about a decade, overcoming technical obstacles only about three years ago.

Cho hopes now to create a tool kit of biosensors to quantify most, if not all lipids.

"We'd like to be able to measure multiple lipids, simultaneously," he said. "It would give us a snapshot of all the processes being regulated by the different lipids inside a cell."

Other authors on the paper are postdoctoral researcher Youngdae Yoon, who developed the sensor; Park J. Lee, a doctoral student who developed microscope tools to enable the lipid quantification; and doctoral student Svetlana Kurilova, who worked on the protein cell delivery.

Paul Francuch | EurekAlert!
Further information:
http://www.uic.edu

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>