Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Masks with Antennas

01.08.2011
Release of masked substances by X-ray radiation

To gain a better understanding of cellular processes, it is crucial to observe which physiological responses are elicited by substances such as signaling agents, pharmaceuticals, or toxins.

This is possible with high spatial and temporal resolution when the active substance is deactivated by a mask that can be removed in a controlled fashion in situ—through irradiation with light. A team led by Peter I. Dalko at the University of Paris (France) has developed a method that also allows for the use of X-rays for unmasking. As the researchers report in the journal Angewandte Chemie, the mask must be equipped with an antenna to receive the X-ray radiation.

Conventional masks come off when irradiated with UV, IR, or visible light. However, this can only penetrate a maximum of about 100 µm deep into tissues. Despite fiber-optic probes and other improved systems for directing the light, it continues to be a challenge to deliver light deeper into tissue. X-rays are able to penetrate several centimeters into soft tissue; however they cannot remove the masks. In order to remove the mask from an active substance, chemical bonds must be broken. This doesn’t work because organic molecules absorb X-rays very poorly.

The French scientists have now used a trick to overcome this hurdle: They use heavy metals as molecular antennas to absorb the X-ray radiation and transfer the energy to the masked molecules.

The researchers deactivate their active molecules by attaching them to an aminoquinoline molecule, a broadly used mask that is normally split off by UV light. For an antenna, they attached a complex of the rare-earth metal gadolinium to this mask. The gadolinium complex was originally developed as a contrast agent for magnetic resonance imaging.

When irradiated with X-rays or gamma rays, the gadolinium absorbs the light energy. This causes one of its electrons to be ejected and transferred to the mask. In consequence, the chemical bond between the mask and the active agent is broken, releasing the agent.

In addition to the study of physiological processes, this method of releasing active substances from their antenna-equipped masks with X-rays could also be a new approach for the phototherapeutic treatment of tumors. A chemotherapeutic agent could be introduced to the body in a masked and thus nontoxic form and targeted to the tumor. As the antenna serves as a probe for magnetic resonance imaging, the tumor can be observed by MRI. By irradiating the tumor with X-rays, the masked agent can be photolyzed locally to release the active agent very specifically in the diseased tissue. This would protect healthy tissue and reduce side effects.

Author: Peter I. Dalko, Université Paris Descartes (France), http://www.biomedicale.parisdescartes.fr/umr8601/DALKO-Peter.html
Title: X-ray Photolysis of a Complex by an Intramolecular Antenna Sensitive to Magnetic Resonance Imaging

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201102948

Peter I. Dalko | Angewandte Chemie
Further information:
http://www.biomedicale.parisdescartes.fr/umr8601/DALKO-Peter.html
http://dx.doi.org/10.1002/anie.201102948

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>