Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Masks with Antennas

Release of masked substances by X-ray radiation

To gain a better understanding of cellular processes, it is crucial to observe which physiological responses are elicited by substances such as signaling agents, pharmaceuticals, or toxins.

This is possible with high spatial and temporal resolution when the active substance is deactivated by a mask that can be removed in a controlled fashion in situ—through irradiation with light. A team led by Peter I. Dalko at the University of Paris (France) has developed a method that also allows for the use of X-rays for unmasking. As the researchers report in the journal Angewandte Chemie, the mask must be equipped with an antenna to receive the X-ray radiation.

Conventional masks come off when irradiated with UV, IR, or visible light. However, this can only penetrate a maximum of about 100 µm deep into tissues. Despite fiber-optic probes and other improved systems for directing the light, it continues to be a challenge to deliver light deeper into tissue. X-rays are able to penetrate several centimeters into soft tissue; however they cannot remove the masks. In order to remove the mask from an active substance, chemical bonds must be broken. This doesn’t work because organic molecules absorb X-rays very poorly.

The French scientists have now used a trick to overcome this hurdle: They use heavy metals as molecular antennas to absorb the X-ray radiation and transfer the energy to the masked molecules.

The researchers deactivate their active molecules by attaching them to an aminoquinoline molecule, a broadly used mask that is normally split off by UV light. For an antenna, they attached a complex of the rare-earth metal gadolinium to this mask. The gadolinium complex was originally developed as a contrast agent for magnetic resonance imaging.

When irradiated with X-rays or gamma rays, the gadolinium absorbs the light energy. This causes one of its electrons to be ejected and transferred to the mask. In consequence, the chemical bond between the mask and the active agent is broken, releasing the agent.

In addition to the study of physiological processes, this method of releasing active substances from their antenna-equipped masks with X-rays could also be a new approach for the phototherapeutic treatment of tumors. A chemotherapeutic agent could be introduced to the body in a masked and thus nontoxic form and targeted to the tumor. As the antenna serves as a probe for magnetic resonance imaging, the tumor can be observed by MRI. By irradiating the tumor with X-rays, the masked agent can be photolyzed locally to release the active agent very specifically in the diseased tissue. This would protect healthy tissue and reduce side effects.

Author: Peter I. Dalko, Université Paris Descartes (France),
Title: X-ray Photolysis of a Complex by an Intramolecular Antenna Sensitive to Magnetic Resonance Imaging

Angewandte Chemie International Edition, Permalink to the article:

Peter I. Dalko | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>