Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Masks with Antennas

01.08.2011
Release of masked substances by X-ray radiation

To gain a better understanding of cellular processes, it is crucial to observe which physiological responses are elicited by substances such as signaling agents, pharmaceuticals, or toxins.

This is possible with high spatial and temporal resolution when the active substance is deactivated by a mask that can be removed in a controlled fashion in situ—through irradiation with light. A team led by Peter I. Dalko at the University of Paris (France) has developed a method that also allows for the use of X-rays for unmasking. As the researchers report in the journal Angewandte Chemie, the mask must be equipped with an antenna to receive the X-ray radiation.

Conventional masks come off when irradiated with UV, IR, or visible light. However, this can only penetrate a maximum of about 100 µm deep into tissues. Despite fiber-optic probes and other improved systems for directing the light, it continues to be a challenge to deliver light deeper into tissue. X-rays are able to penetrate several centimeters into soft tissue; however they cannot remove the masks. In order to remove the mask from an active substance, chemical bonds must be broken. This doesn’t work because organic molecules absorb X-rays very poorly.

The French scientists have now used a trick to overcome this hurdle: They use heavy metals as molecular antennas to absorb the X-ray radiation and transfer the energy to the masked molecules.

The researchers deactivate their active molecules by attaching them to an aminoquinoline molecule, a broadly used mask that is normally split off by UV light. For an antenna, they attached a complex of the rare-earth metal gadolinium to this mask. The gadolinium complex was originally developed as a contrast agent for magnetic resonance imaging.

When irradiated with X-rays or gamma rays, the gadolinium absorbs the light energy. This causes one of its electrons to be ejected and transferred to the mask. In consequence, the chemical bond between the mask and the active agent is broken, releasing the agent.

In addition to the study of physiological processes, this method of releasing active substances from their antenna-equipped masks with X-rays could also be a new approach for the phototherapeutic treatment of tumors. A chemotherapeutic agent could be introduced to the body in a masked and thus nontoxic form and targeted to the tumor. As the antenna serves as a probe for magnetic resonance imaging, the tumor can be observed by MRI. By irradiating the tumor with X-rays, the masked agent can be photolyzed locally to release the active agent very specifically in the diseased tissue. This would protect healthy tissue and reduce side effects.

Author: Peter I. Dalko, Université Paris Descartes (France), http://www.biomedicale.parisdescartes.fr/umr8601/DALKO-Peter.html
Title: X-ray Photolysis of a Complex by an Intramolecular Antenna Sensitive to Magnetic Resonance Imaging

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201102948

Peter I. Dalko | Angewandte Chemie
Further information:
http://www.biomedicale.parisdescartes.fr/umr8601/DALKO-Peter.html
http://dx.doi.org/10.1002/anie.201102948

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>