Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Maryland Researchers Take Aim at Avian Flu Vaccine

16.12.2008
Researchers at the University of Maryland are hot on the trail of a universal flu vaccine for animals - which could ultimately help prevent or delay another avian flu pandemic in humans.

A University of Maryland-led science team has developed a universal influenza vaccine for animals that may help prevent or delay another human flu pandemic.

Led by Daniel Perez, a University of Maryland associate professor and virologist, the team has developed a vaccine component that can be used to immunize both birds and mammals from dangerous forms of the flu, including the highly lethal H5N1 avian influenza strain.

This new universal influenza component promises to make it much easier to create a human vaccine capable of protecting humans against lethal avian bird flu strains. In addition, it can be used to vaccinate wild and domestic birds or other species, thus reducing the spread of flu viruses among these populations and decreasing the chance that deadly new human flu strains will spring from these animal reservoirs.

"We now have a vaccine that works in many animal species and can protect against any type of influenza that we want," Perez said, who does his research at the College Park campus of the Virginia Maryland Regional College of Veterinary Medicine (Avian Flu Virus Program).

FROM VIRUS TO VACCINE

The vaccine for a virus is derived from the virus. The vaccine mimics the presence of the virus without causing disease, priming the body's immune system to recognize and fight against the virus. The immune system produces antibodies against the vaccine that remain in the system until they are needed. If that virus, or in some case a closely similar one is later introduced into the system, those antibodies attach to viral particles and remove them before they have time to replicate, preventing or lessening symptoms of the virus.

Perez and his team used genes from the avian flu virus H9N2 to create a live, weakened flu vaccine. This type of vaccine consists of a living but weakened form of a virus that is generally harmless.

"H9N2 is another avian influenza virus with a broad host range. It can infect both birds and mammals," Perez said. "We wanted to try to use the backbone of that virus to create a live but weakened form of the virus and make a one-size-fits-all universal vaccine."

They isolated genes from the H9N2 virus to make up a "backbone" that consists of internal genes common to other flu strains. The backbone can be used as a starting point from which to quickly create other live, weakened flu vaccines because it can be genetically modified at the surface to resemble particular flu viruses for the purposes of vaccination.

"We can attach any surface proteins to this backbone to make a vaccine specific for almost any another influenza virus," Perez said.

Most currently used vaccines offer protection for a specific animal species against a small range of virus strains. These vaccines take a long time to make (about six months for a vaccine tailored for humans) and they generally cannot be shared between species.

An Impending Human Influenza Pandemic

Avian flu viruses are so lethal to humans because they are structurally different from human strains. The human immune system does not recognize these viruses and therefore cannot defend the body against them. Because there is little natural immunity to these strains of viruses in humans, a pandemic would likely result if one of these avian flu viruses mutated to spread easily among humans. Because of increased international travel, such a virus would likely spread more easily and quickly than in past influenza pandemics.

Some avian influenza strains, including the H5N1 and H9N2 strains have shown a limited ability to infect humans who have direct contact with birds, but these virus strains cannot be easily transmitted from human to human. However, 50 percent of humans recently infected with the H5N1 strain have died, sparking growing concern among world health officials about the potential for this strain to cause a human pandemic.

The Centers for Disease Control (CDC) says another strain of bird flu virus could mutate and become easily transmissible between humans, causing another pandemic. However, no one knows which influenza strain will undergo such a mutation. The H5N1 avian flu virus has recently caused an influenza pandemic in wild and domestic birds in Eurasian and African countries, and may be a likely candidate.

"In case of pandemic influenza, we will need a vaccine, but we cannot tell ahead of time what the virus is going to look like," Perez said. "We may prepare a vaccine before the pandemic occurs, but we don't know if that vaccine is going to be good enough."

A universal backbone that could immunize many different animal species, like the one that Dr. Perez has proposed, could be modified quickly to create a vaccine for a specific virus.

"A vaccine from this backbone could be deployed much faster than one specifically tailored to humans, because the vaccine would be already available for other animals. All we would have to do is modify it, grow it, and use it in humans. We would not have to remake it from scratch," he said.

NEXT STEPS

Perez and his team have already shown that a vaccine consisting of a weakened form of the H9N2 virus is capable of protecting chickens, their eggs and mice against two other lethal forms of the flu virus, including the highly lethal H5N1 avian flu. This vaccine could be administered to immunize wild and domestic birds against avian flu to minimize spread to humans.

Next they will test the vaccine in other mammals like pigs and ferrets, good models for the human immune system.

While it may be several years before scientists like Perez create an effective vaccine to protect humans against lethal H5N1 or other lethal avian bird flu strains, the universal influenza backbone will make the eventual creation of that vaccine much easier.

Dave Ottalini | Newswise Science News
Further information:
http://www.umd.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>