Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Mapping the 'dark matter' of human DNA

10.10.2016

Researchers from ERIBA, Radboud UMC, XJTU, Saarland University, CWI and UMC Utrecht have made a big step towards a better understanding of the human genome. By identifying large DNA variants in 250 Dutch families, the researchers have clarified part of the "dark matter", the great unknown, of the human genome. These new data enable researchers from all over the world to study the DNA variants and use the results to better understand genetic disease.

The findings were published on October 6 in the scientific journal "Nature Communications".

Although our knowledge of the human DNA is extensive, it is nowhere near complete. For instance, our knowledge of exactly which changes in our DNA are responsible for a certain disease is often insufficient. This is related to the fact that no two people have exactly the same DNA. Even the DNA molecules of identical twins have differences, which occur during their development and ageing.


This is a detail of a representation of a DNA variants map.

Credit: Nature Communications (DOI: 10.1038/ncomms12989)

Some differences ensure that not everybody looks exactly alike, while others determine our susceptibility to particular diseases. Knowledge about the DNA variants can therefore tell us a lot about potential health risks and is a first step towards personalized medicine.

Many small variants in the human genome - the whole of genetic information in the cell - have already been documented. Although it is known that larger structural variants play an important role in many hereditary diseases, these variants are also more difficult to detect and are, therefore, much less investigated.

... more about:
»DNA »dark matter »diseases »genomes

By comparing the DNA of 250 healthy Dutch families with the reference DNA database the researchers were able to identify 1.9 million variants affecting multiple DNA 'letters'. These variants include large sections of DNA that have disappeared, moved or even appear out of nowhere.

When this happens in the middle of a gene that encodes a certain protein, it is likely that the functionality of the gene, and thus the production of the protein, is compromised. However, large structural variants often occur just before or after the coding part of a gene. The effect of this type of variation is hard to predict.

In the paper two occasions are described in which an extra piece of DNA was found just outside the coding region of a gene. In these occasions the variants had a demonstrable effect on the gene regulation. This proves that even structural variants that occur outside the coding regions need to be monitored closely in future DNA screenings.

The catalogue of variants provided by this research enables other scientists to predict the occurrence of large structural variants from the known profile of the smaller ones. This technique opens new possibilities for studying the effects of large structural changes in our genomes.

Additionally, the research resulted in the discovery of large parts of DNA that were not included in the genome reference. This "extra" DNA does contain parts that could be involved in the production of proteins. One of the extra pieces of DNA that was described in the paper is a new "ZNF" gene that has previously never been found in humans. Nevertheless it appears to be present in roughly half of the Dutch population.

This particular gene is a member of the ZNF gene family that was known from the reference genomes of several species of apes. The new variant will now be added to the human reference database. Authors subsequently showed that this gene is also present in genomes of several other human populations, however its function remains unknown. The fact that these and other pieces of "dark matter" now have been placed on the genetic map enables scientists worldwide to study them and use the results to better understand human genetic diseases.

This study is part of the Genome of the Netherlands (GoNL) project. One of the main goals of the study is to map the genome of the Dutch population and all its variants. Several teams of bio- informaticians from different countries work continuously on the development of new algorithms for data analysis, as well as on innovative ways to combine existing algorithms. The result: an accurate representation of the genomes of the Dutch population and thereby a solid base for the personalised medicine of the future.

###

"A high-quality human reference panel reveals the complexity and distribution of genomic structural variants": https://doi.org/10.1038/ncomms12989

For more information on GoNL: http://www.nlgenome.nl/

ERIBA: European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
Radboud UMC: Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
XJTU: Xi'an Jiaotong University, Xi'an, China
Saarland University: Center for Bioinformatics, Saarland University, Saarbrücken, Germany
CWI: Life Sciences Group, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands.
UMC Utrecht: Center for Molecular Medicine, Division of Biomedical Genetics, University Medical Center Utrecht, Utrecht, The Netherlands

Tobias Marschall | EurekAlert!

Further reports about: DNA dark matter diseases genomes

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>