Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Malaria parasite caught red-handed invading blood cells

20.01.2011
Australian scientists using new image and cell technologies have for the first time caught malaria parasites in the act of invading red blood cells. The researchers, from the Walter and Eliza Hall Institute in Melbourne, Australia, and the University of Technology, Sydney (UTS), achieved this long-held aim using a combination of electron, light and super resolution microscopy, a technology platform new to Australia.

The detailed look at what occurs as the parasite burrows through the walls of red blood cells provides new insights into the molecular and cellular events that drive cell invasion and may pave the way for developing new treatments for malaria. Institute researchers Dr Jake Baum, Mr David Riglar, Dr Dave Richard and colleagues from the institute's Infection and Immunity division led the research with colleagues from the i3 institute at UTS.

Dr Baum said the real breakthrough for the research team had been the ability to capture high-resolution images of the parasite at each and every stage of invasion, and to do so reliably and repeatedly. Their findings are published in today's issue of the journal Cell Host & Microbe.

"It is the first time we've been able to actually visualise this process in all its molecular glory, combining new advances developed at the institute for isolating viable parasites with innovative imaging technologies," Dr Baum said.

"Super resolution microscopy has opened up a new realm of understanding into how malaria parasites actually invade the human red blood cell. Whilst we have observed this miniature parasite drive its way into the cell before, the beauty of the new imaging technology is that it provides a quantum leap in the amount of detail we can see, revealing key molecular and cellular events required for each stage of the invasion process."

The imaging technology, called OMX 3D SIM super resolution microscopy, is a powerful new 3D tool that captures cellular processes unfolding at nanometer scales. The team worked closely with Associate Professor Cynthia Whitchurch and Dr Lynne Turnbull from the i3 institute at UTS to capture these images.

"This is just the beginning of an exciting new era of discoveries enabled by this technology that will lead to a better understanding of how microbes such as malaria, bacteria and viruses cause infectious disease," Associate Professor Whitchurch said.

Dr Baum said the methodology would be integral to the development of new malaria drugs and vaccines. "If, for example, you wanted to test a particular drug or vaccine, or investigate how a particular human antibody works to protect you from malaria, this imaging approach now gives us a window to see the actual effects that each reagent or antibody has on the precise steps of invasion," he said.

Malaria is caused by the Plasmodium parasite, which is transmitted by the bite of infected mosquitoes. Each year more than 400 million people contract malaria, and as many as a million, mostly children, die.

"Historically it has been very difficult to both isolate live and viable parasites for infection of red blood cells and to employ imaging technologies sensitive enough to capture snapshots of the invasion process with these parasites, which are only one micron (one millionth of a metre) in diameter," Dr Baum said.

He said one of the most interesting discoveries the imaging approach revealed was that once the parasite has attached to the red blood cell and formed a tight bond with the cell, a master switch for invasion is initiated and invasion will continue unabated without any further checkpoints.

"The parasite actually inserts its own window into the cell, which it then opens and uses to walk into the cell, which is quite extraordinary," Dr Baum said. "Visually tracking the invasion of Plasmodium falciparum into a red blood cell is something I've been aiming at ever since I began at the Walter and Eliza Hall Institute in 2003; it's really thrilling to have reached that goal. This technology enables us to look at individual proteins that we always knew were involved in invasion, but we never knew what they did or where they were, and that, we believe, is a real leap for malaria researchers worldwide."

This work was supported by the National Health and Medical Research Council, The University of Melbourne, Canadian Institutes of Health, the University of Technology, Sydney, and the Australian Research Council.

Penny Fannin | EurekAlert!
Further information:
http://www.wehi.edu.au

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>