Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Malaria parasite caught red-handed invading blood cells

Australian scientists using new image and cell technologies have for the first time caught malaria parasites in the act of invading red blood cells. The researchers, from the Walter and Eliza Hall Institute in Melbourne, Australia, and the University of Technology, Sydney (UTS), achieved this long-held aim using a combination of electron, light and super resolution microscopy, a technology platform new to Australia.

The detailed look at what occurs as the parasite burrows through the walls of red blood cells provides new insights into the molecular and cellular events that drive cell invasion and may pave the way for developing new treatments for malaria. Institute researchers Dr Jake Baum, Mr David Riglar, Dr Dave Richard and colleagues from the institute's Infection and Immunity division led the research with colleagues from the i3 institute at UTS.

Dr Baum said the real breakthrough for the research team had been the ability to capture high-resolution images of the parasite at each and every stage of invasion, and to do so reliably and repeatedly. Their findings are published in today's issue of the journal Cell Host & Microbe.

"It is the first time we've been able to actually visualise this process in all its molecular glory, combining new advances developed at the institute for isolating viable parasites with innovative imaging technologies," Dr Baum said.

"Super resolution microscopy has opened up a new realm of understanding into how malaria parasites actually invade the human red blood cell. Whilst we have observed this miniature parasite drive its way into the cell before, the beauty of the new imaging technology is that it provides a quantum leap in the amount of detail we can see, revealing key molecular and cellular events required for each stage of the invasion process."

The imaging technology, called OMX 3D SIM super resolution microscopy, is a powerful new 3D tool that captures cellular processes unfolding at nanometer scales. The team worked closely with Associate Professor Cynthia Whitchurch and Dr Lynne Turnbull from the i3 institute at UTS to capture these images.

"This is just the beginning of an exciting new era of discoveries enabled by this technology that will lead to a better understanding of how microbes such as malaria, bacteria and viruses cause infectious disease," Associate Professor Whitchurch said.

Dr Baum said the methodology would be integral to the development of new malaria drugs and vaccines. "If, for example, you wanted to test a particular drug or vaccine, or investigate how a particular human antibody works to protect you from malaria, this imaging approach now gives us a window to see the actual effects that each reagent or antibody has on the precise steps of invasion," he said.

Malaria is caused by the Plasmodium parasite, which is transmitted by the bite of infected mosquitoes. Each year more than 400 million people contract malaria, and as many as a million, mostly children, die.

"Historically it has been very difficult to both isolate live and viable parasites for infection of red blood cells and to employ imaging technologies sensitive enough to capture snapshots of the invasion process with these parasites, which are only one micron (one millionth of a metre) in diameter," Dr Baum said.

He said one of the most interesting discoveries the imaging approach revealed was that once the parasite has attached to the red blood cell and formed a tight bond with the cell, a master switch for invasion is initiated and invasion will continue unabated without any further checkpoints.

"The parasite actually inserts its own window into the cell, which it then opens and uses to walk into the cell, which is quite extraordinary," Dr Baum said. "Visually tracking the invasion of Plasmodium falciparum into a red blood cell is something I've been aiming at ever since I began at the Walter and Eliza Hall Institute in 2003; it's really thrilling to have reached that goal. This technology enables us to look at individual proteins that we always knew were involved in invasion, but we never knew what they did or where they were, and that, we believe, is a real leap for malaria researchers worldwide."

This work was supported by the National Health and Medical Research Council, The University of Melbourne, Canadian Institutes of Health, the University of Technology, Sydney, and the Australian Research Council.

Penny Fannin | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>