Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Making better medicines with a handful of chemical building blocks

20.05.2014

Soon, making and improving medical drugs could be as easy for chemists as stacking blocks is for a child.

University of Illinois chemist Martin Burke, a pioneer of a technique that constructs complex molecules from simple chemical “building blocks,” led a group that found that thousands of compounds in a class of molecules called polyenes – many of which have great potential as drugs – can be built simply and economically from a scant one dozen different building blocks.


Photo by L. Brian Stauffer

University of Illinois chemistry professor Martin Burke led a team that discovered a simple system to synthesize a large class of medically important molecules using only 12 different chemical “building blocks.”

The researchers published their findings in the journal Nature Chemistry.

“We want to understand how these molecules work, and synthesis is a very powerful engine to drive experiments that enable understanding,” said Burke, a chemistry professor at the U. of I. and the Howard Hughes Medical Institute. “We think this is a really powerful road map for getting there.

Once you have the pieces in a bottle, you can make naturally occurring molecules, or you can change the pieces slightly to make them better. Usually, that’s such a herculean task that it slows down research. But if that part becomes on-demand, you can make anything you want, and it can powerfully accelerate the drug discovery process.”

In the same way that plastic building blocks of different sizes and shapes can snap together because they share a simple connector, the chemical building blocks are linked together with one simple reaction. This gives scientists freedom to build molecules that may be difficult or expensive to extract from their natural source or to make in a lab.

One advantage of the building-block approach is that it allows the researchers to mix and match parts to build many different molecules, and to omit or substitute parts to make a potentially therapeutic substance better for human health. For example, Burke’s group recently synthesized a derivative of the anti-fungal medication amphotericin (pronounced AM-foe-TAIR-uh-sin), which led to a big breakthrough in understanding how this clinically vital but highly toxic medicine works and the discovery of another derivative that is nontoxic to human cells while still effective at killing fungus.

After their success in synthesizing derivatives of amphotericin, which fall into the polyene category, the researchers wondered, how many different building blocks would it take to make all the polyenes? (Polyene is pronounced polly-een.)

Looking at the structures of all the known naturally occurring polyenes – thousands in all – Burke and graduate students Eric Woerly and Jahnabi Roy focused on the smaller pieces that made up the molecules and found that many elements were common across numerous compounds.

After careful analysis, they calculated that more than three-quarters of all natural polyene frameworks could be made with only 12 different blocks.

“That is the key most surprising result,” Burke said. “We’ve had this gut instinct that there will be a set number of building blocks from which most natural products can be made. We’re convinced, based on this result, that we can put together a platform that would enable on-demand assembly of complex small molecules. Then researchers can focus on exploring the function of these molecules, rather than spending all their time and energy trying to make them.”

Watch a video of Burke explaining the building block approach.

To demonstrate this surprising finding, the researchers synthesized several compounds representing a wide variety of polyene molecules using only the dozen designated building blocks. Many of these building blocks are available commercially thanks to a partnership between Burke’s group and Sigma-Aldrich, a chemical company.

Burke hopes that identifying the required building blocks and making them widely available will speed understanding of polyene natural products and their potential as pharmaceuticals, particularly compounds that until now have been left unexplored because they were too costly or time-consuming to make.

Burke’s group hopes eventually to identify and manufacture a set of building blocks from which any researcher – trained chemist or not – can build any small molecule.

“Now that we have this quantifiable result, that with only 12 building blocks we can make more than 75 percent of polyenes, we are committed to figuring out a global collection of building blocks – how to make them, how to put them together – to create a generalized approach for small-molecule synthesis.”

The National Institutes of Health supported the work.

Editor's note: To contact Martin Burke, call 217-244-8726; email mdburke@illinois.edu.

The paper, “Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction,” is available online.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

Further reports about: compounds drugs energy function medicines plastic structures synthesis

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>