Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Making better medicines with a handful of chemical building blocks


Soon, making and improving medical drugs could be as easy for chemists as stacking blocks is for a child.

University of Illinois chemist Martin Burke, a pioneer of a technique that constructs complex molecules from simple chemical “building blocks,” led a group that found that thousands of compounds in a class of molecules called polyenes – many of which have great potential as drugs – can be built simply and economically from a scant one dozen different building blocks.

Photo by L. Brian Stauffer

University of Illinois chemistry professor Martin Burke led a team that discovered a simple system to synthesize a large class of medically important molecules using only 12 different chemical “building blocks.”

The researchers published their findings in the journal Nature Chemistry.

“We want to understand how these molecules work, and synthesis is a very powerful engine to drive experiments that enable understanding,” said Burke, a chemistry professor at the U. of I. and the Howard Hughes Medical Institute. “We think this is a really powerful road map for getting there.

Once you have the pieces in a bottle, you can make naturally occurring molecules, or you can change the pieces slightly to make them better. Usually, that’s such a herculean task that it slows down research. But if that part becomes on-demand, you can make anything you want, and it can powerfully accelerate the drug discovery process.”

In the same way that plastic building blocks of different sizes and shapes can snap together because they share a simple connector, the chemical building blocks are linked together with one simple reaction. This gives scientists freedom to build molecules that may be difficult or expensive to extract from their natural source or to make in a lab.

One advantage of the building-block approach is that it allows the researchers to mix and match parts to build many different molecules, and to omit or substitute parts to make a potentially therapeutic substance better for human health. For example, Burke’s group recently synthesized a derivative of the anti-fungal medication amphotericin (pronounced AM-foe-TAIR-uh-sin), which led to a big breakthrough in understanding how this clinically vital but highly toxic medicine works and the discovery of another derivative that is nontoxic to human cells while still effective at killing fungus.

After their success in synthesizing derivatives of amphotericin, which fall into the polyene category, the researchers wondered, how many different building blocks would it take to make all the polyenes? (Polyene is pronounced polly-een.)

Looking at the structures of all the known naturally occurring polyenes – thousands in all – Burke and graduate students Eric Woerly and Jahnabi Roy focused on the smaller pieces that made up the molecules and found that many elements were common across numerous compounds.

After careful analysis, they calculated that more than three-quarters of all natural polyene frameworks could be made with only 12 different blocks.

“That is the key most surprising result,” Burke said. “We’ve had this gut instinct that there will be a set number of building blocks from which most natural products can be made. We’re convinced, based on this result, that we can put together a platform that would enable on-demand assembly of complex small molecules. Then researchers can focus on exploring the function of these molecules, rather than spending all their time and energy trying to make them.”

Watch a video of Burke explaining the building block approach.

To demonstrate this surprising finding, the researchers synthesized several compounds representing a wide variety of polyene molecules using only the dozen designated building blocks. Many of these building blocks are available commercially thanks to a partnership between Burke’s group and Sigma-Aldrich, a chemical company.

Burke hopes that identifying the required building blocks and making them widely available will speed understanding of polyene natural products and their potential as pharmaceuticals, particularly compounds that until now have been left unexplored because they were too costly or time-consuming to make.

Burke’s group hopes eventually to identify and manufacture a set of building blocks from which any researcher – trained chemist or not – can build any small molecule.

“Now that we have this quantifiable result, that with only 12 building blocks we can make more than 75 percent of polyenes, we are committed to figuring out a global collection of building blocks – how to make them, how to put them together – to create a generalized approach for small-molecule synthesis.”

The National Institutes of Health supported the work.

Editor's note: To contact Martin Burke, call 217-244-8726; email

The paper, “Synthesis of most polyene natural product motifs using just 12 building blocks and one coupling reaction,” is available online.

Liz Ahlberg | University of Illinois
Further information:

Further reports about: compounds drugs energy function medicines plastic structures synthesis

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>