Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Luminescence shines new light on proteins

11.11.2008
A chance discovery by a team of scientists using optical probes means that changes in cells in the human body could now be seen in a completely different light.

Prof David Parker from Durham University’s Chemistry Department was working with experts from Glasgow University, and a team of international researchers, when they discovered dramatic changes in the way that light was emitted by optical probes during a series of experiments.

Light has energy and carries information and the researchers used the optical probes to measure the behaviour of light and its interaction with proteins abundant in human blood. The fortuitous discovery has led to the creation of a new type of probe for examining protein interactions that could be used for cellular imaging.

By tracking the way in which proteins bind, the experiments will aid understanding of the function of the most abundant protein in the body, serum albumin. In the future the technique could help to understand how drugs used in medicine interact with the major protein found in blood.

Prof Parker says: “It’s a new step in the development of optical probes in chemistry and in observing the interaction between medical drugs and proteins.”

The Durham University-led team looked at how light behaved when serum albumin was added to the probes and found that the emitted polarised light had interesting characteristics.

Chirality, or handedness, is a key concept in Nature. In molecular chemistry, it refers to the concept of a molecule having two mirror images that cannot be superimposed onto each other; these are called enantiomers and pairs of these can be designated as ‘right-‘ and ‘left-handed.’

Light can be thought of as being made up of two left and right handed components and this property can be measured. The research team used optical probes with hi-spatial resolution and precision to track protein interactions and to see how the light rotates and inverts when passed through the proteins.

Prof Parker says: “We have found a way to use the inherent chirality of light to examine the interaction at the molecular level between a probe (the optical probe, itself of one handedness) and serum albumin (also of one handedness: hence akin to a hand/glove interaction) - the most abundant protein in blood.”

Based on a chiral lanthanide complex, the probe emits circularly polarised light that inverts sign on protein binding; monitoring the emitted light allows researchers to follow the interaction between the complex and the protein.

Observing this luminescence is a way of studying the chirality of the system, explains Prof Parker: “The optical signal we observed carries information in its circular polarisation. It’s a tricky process. You have to get the light in and out of the cells but crucially, in terms of biology, it can be done using microscopes in the laboratory so it’s non-invasive.”

The researchers found that only one enantiomer of certain europium and terbium complexes bound selectively to a drug binding site of the protein serum albumin, and that the luminescence changed dramatically. Prof Parker says: “This is the first example of chiral inversion using an emissive probe in this way.”

The researchers have been seeking to develop responsive optical probes for a while and were delighted when they finally cracked it.

Prof Parker said: “We were genuinely surprised. The binding energy and kinetics have to be just right - we've been lucky. Potentially this technology could be used to track protein association in living cells in real time.”

Alex Thomas | alfa
Further information:
http://www.rsc.org/publishing/journals/CC/article.asp?doi=B810978H
http://www.dur.ac.uk/chemistry/staff/profile/?id=195

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>