Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Luminescence shines new light on proteins

A chance discovery by a team of scientists using optical probes means that changes in cells in the human body could now be seen in a completely different light.

Prof David Parker from Durham University’s Chemistry Department was working with experts from Glasgow University, and a team of international researchers, when they discovered dramatic changes in the way that light was emitted by optical probes during a series of experiments.

Light has energy and carries information and the researchers used the optical probes to measure the behaviour of light and its interaction with proteins abundant in human blood. The fortuitous discovery has led to the creation of a new type of probe for examining protein interactions that could be used for cellular imaging.

By tracking the way in which proteins bind, the experiments will aid understanding of the function of the most abundant protein in the body, serum albumin. In the future the technique could help to understand how drugs used in medicine interact with the major protein found in blood.

Prof Parker says: “It’s a new step in the development of optical probes in chemistry and in observing the interaction between medical drugs and proteins.”

The Durham University-led team looked at how light behaved when serum albumin was added to the probes and found that the emitted polarised light had interesting characteristics.

Chirality, or handedness, is a key concept in Nature. In molecular chemistry, it refers to the concept of a molecule having two mirror images that cannot be superimposed onto each other; these are called enantiomers and pairs of these can be designated as ‘right-‘ and ‘left-handed.’

Light can be thought of as being made up of two left and right handed components and this property can be measured. The research team used optical probes with hi-spatial resolution and precision to track protein interactions and to see how the light rotates and inverts when passed through the proteins.

Prof Parker says: “We have found a way to use the inherent chirality of light to examine the interaction at the molecular level between a probe (the optical probe, itself of one handedness) and serum albumin (also of one handedness: hence akin to a hand/glove interaction) - the most abundant protein in blood.”

Based on a chiral lanthanide complex, the probe emits circularly polarised light that inverts sign on protein binding; monitoring the emitted light allows researchers to follow the interaction between the complex and the protein.

Observing this luminescence is a way of studying the chirality of the system, explains Prof Parker: “The optical signal we observed carries information in its circular polarisation. It’s a tricky process. You have to get the light in and out of the cells but crucially, in terms of biology, it can be done using microscopes in the laboratory so it’s non-invasive.”

The researchers found that only one enantiomer of certain europium and terbium complexes bound selectively to a drug binding site of the protein serum albumin, and that the luminescence changed dramatically. Prof Parker says: “This is the first example of chiral inversion using an emissive probe in this way.”

The researchers have been seeking to develop responsive optical probes for a while and were delighted when they finally cracked it.

Prof Parker said: “We were genuinely surprised. The binding energy and kinetics have to be just right - we've been lucky. Potentially this technology could be used to track protein association in living cells in real time.”

Alex Thomas | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>