Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Learning from a virus: Keeping genes under wraps

31.07.2013
An international collaboration of researchers including Felicia Goodrum of the University of Arizona's immunobiology department has studied how a human herpes virus carried by the majority of the population packages its genetic information during infection.

The discoveries improve the chances of developing more targeted therapies in place of existing drugs, which do not always work or come with side effects.


The top image shows uninfected, normal human cells with cell nuclei in blue and the cellular protein processing apparatus in red. In the infected cells (bottom image), the virus has produced proteins (green) that take over and reorganize the cellular processing apparatus into a virus factory.

Credit: Farah Bughio, Felicia Goodrum

Experts estimate that 60 to 90 percent of the world's population carry the human cytomegalovirus, or CMV, which is one of the eight herpes viruses that infect humans.

In healthy individuals, the virus lies dormant and does not cause overt disease. However, it poses a significant risk when contracted by unborn children – whose immune system has not matured yet – and individuals with compromised immune function.

CMV is the leading cause of birth defects resulting from any infectious agent. It affects one in 150 births in the US and most commonly results in hearing loss, but can also cause cognitive or physical anomalies and cerebral palsy. Once infected, the virus stays in the body for life and flares up only when the immune system is suppressed, for example in AIDS patients, transplant patients and cancer patients undergoing intensive chemotherapy.

For the study, published in the scientific journal Proceedings of the National Academy of Sciences (PNAS), Goodrum teamed up with collaborators in Germany and Israel.

The researchers investigated how a fundamental aspect of the human cell regulates the virus: the mechanism by which genetic information is packaged and stored. Understanding how the viral DNA behaves in the human host cells during dormancy and reactivation of the virus provides the basis for the development of drugs that could prevent the virus from "waking up" and causing disease.

"The human immune system is very sophisticated, and the way this virus has managed to stealthily integrate into our biology to ensure its own survival is no small feat," said Goodrum, also a member of the UA's BIO5 Institute.

"CMV is a master of human cell biology. From transcribing DNA into blueprints for proteins to the manufacturing of those proteins, from cell division to cellular metabolism, there is not a process this virus has not tweaked," Goodrum also said.

That mastery, she explained, is the reason the virus is so elusive to vaccine, and there currently is no way to eradicate it. Goodrum noted that with other herpes viruses, like Epstein-Barr or chicken pox, the infection is obvious. But that is not the case with CMV.

"From the perspective of a virus, that is the pinnacle of mastery – to infect without ever making its presence known," Goodrum said.

"To develop more effective antiviral strategies, we must understand the biology of the virus infection and how the virus manages to persist for our lifetimes," she said. "We are trying to understand how our cellular mechanisms are being used by this virus and discover targets for drugs to control it."

Each human cell contains a thread of DNA that is about 6 feet long, stowed away in its nucleus and tightly packaged by proteins called histones. One such package of genetic material is called a chromosome.

"You can imagine histones as a spool, and the thread is DNA that wraps around the spool," Goodrum said. "This accomplishes two important objectives: first, it condenses DNA so that it can be packed into the cell nucleus and second, it provides the cell with a mechanism to regulate the activity of the genes encoded on that DNA."

The association between histones and DNA is very dynamic and acts as a key mechanism used by cells to control which genes are expressed and which are not, Goodrum explained.

For example, when DNA is wound tightly around histones, it is not accessible to enzymes specializing in making copies of genes in a process called transcription, which subsequently serve as blueprints to manufacture proteins.

"When a virus like CMV infects our cells, its DNA is packaged by histones just as if it were the cell's own DNA," Goodrum said.

"The question is, how does this happen, and does the virus have any choice in the matter? Our work maps the deposition of histones across the viral DNA chromosome and shows that the virus encodes a mechanism to reorganize these histones to favor the expression of genes from the viral chromosome."

Michael Nevels of the Institute for Medical Microbiology and Hygiene at the University of Regensburg, Germany, said: "Now that we have determined the positions of the nucleosomes, we can study how transcription is regulated, and from that others can start developing therapies."

For example, if researchers can identify molecules that play key roles in the process, they can design new drugs that target those molecules.

"Since we can't eliminate the virus, the goal is to keep it in check," said Nevels, who led the study together with Eran Segal and Einat Zalckvar of the Weizmann Institute of Science in Rehovot, Israel.

"The idea is to target the virus on the level of its DNA structure and to reduce the gene activity back to the dormancy levels," Nevels said.

One such molecular target identified in this study is a viral protein called IE1. Because it regulates the packaging and unpacking of the viral DNA, it could potentially be a target for new therapies.

Cautioning that many more steps will be necessary before this could be achieved, Nevels said that "if we could inhibit IE1, the virus genome would be packed more tightly with histones, which leaves less DNA accessible and prevents genes from becoming active."

Another strategy takes the opposite direction by deliberately awaking the virus from its dormant state so it becomes vulnerable to antiviral drugs. This could be an option for patients about to undergo an organ transplantation, which requires immune-suppressing drugs to prevent the new organ from being rejected. Suppressing the immune system allows the virus to reactivate.

"There are antivirals that target the active, replicating virus but they can't target latent virus because in that state, it's really just a piece of DNA in the cell nucleus," Goodrum said. "Before those patients enter a immunosuppressed state, you would target the viral reservoirs and force the virus out of latency."

Daniel Stolte | University of Arizona
Further information:
http://www.arizona.edu

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>