Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New lead on malaria treatment

20.05.2009
Variation of natural compound cures malaria in mice

Approximately 350 million to 500 million cases of malaria are diagnosed each year mostly in sub-Saharan Africa. While medications to prevent and treat malaria do exist, the demand for new treatments is on the rise, in part, because malaria parasites have developed a resistance to existing medications.

Now, researchers at the Johns Hopkins University School of Medicine have discovered one way to stop malaria parasite growth, and this new finding could guide the development of new malaria treatments.

"Our research on malaria is in line with Johns Hopkins' mission to address health problems on a global level," says Jun O. Liu, Ph.D., a professor of pharmacology and molecular sciences. "Our findings offer both a new potential molecular target for treating malaria and a compound that interacts at that target. These are important steps in discovering drugs that could help to treat malaria." The results of the research were published in the February 27 issue of Chemistry & Biology.

Liu's research team has for many years studied MetAP2 proteins, which are found in all organisms — from humans to single-celled bacteria — and essential for cell survival. They reasoned that if the malaria parasite has its own MetAP2, finding a chemical that disrupts MetAP2 function may lead to a new drug to stop parasite growth and malaria spread. So they searched a computer database of the sequence of the malaria parasite genome and found one protein very similar to human MetAP2, which they named PfMetAP2 for plasmodium falciparum, the parasite that causes malaria.

Recently other researchers reported that the natural antibiotic fumagillin can stop malaria parasites from growing, possibly by interfering with MetAP2. But the man-made version of fumagillin causes brain cells to die, so Liu's team made several compounds chemically related to fumagillin in hopes of finding one less toxic but still effective in interfering with PfMetAP2. They chose to further study one of these compounds, fumarranol, because it interacts with human MetAP2 and is less toxic to mice.

The team first tested whether fumarranol can stick to and interfere with PfMetAP2 by treating mouse cells containing PfMetAP2 with different amounts of fumarranol and fumagillin and comparing them to untreated cells. In treated cells, fumarranol stuck to PfMetAP2 and stopped it from working.

They next asked whether fumarranol could stop malaria parasites from growing in a culture dish. They treated both drug-resistant and multidrug-resistant strains of Plasmodium falciparum and found that fumarranol could stop the parasite from multiplying.

The team then gave mice infected with malaria fumarranol for four days after infection and measured the parasite load in the blood. They found that after four days, fumarranol worked as well as fumagillin to slow infection. After another 26 days they again measured parasites in the blood, found that some mice carried no observable level of parasites and considered these animals cured.

"The next step for establishing a new treatment for malaria would be to test whether fumarranol is the most optimal treatment or if new compounds that are similar to fumarranol might be even more specific to malaria parasites," Liu says.

This research was funded by a pilot grant from the Malaria Research Institute of Johns Hopkins Bloomberg School of Public Health and the Department of Pharmacology, Johns Hopkins School of Medicine and the Keck Foundation.

Authors on the paper are X. Chen, S. Xie, S. Bhat, T.A. Shapiro, and J.O. Liu of the Johns Hopkins University School of Medicine, and N. Kumar of the Johns Hopkins Bloomberg School of Public Health.

On the Web: http://www.hopkinsmedicine.org/pharmacology/research/liu.html

Audrey Huang | EurekAlert!
Further information:
http://www.jhmi.edu
http://www.cell.com/neuron/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>