Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Large Genomic Study Identifies Endometrial Cancer Subtypes, Treatment Opportunities

02.05.2013
Endometrial tumors can be reclassified into distinct subtypes based partly on their genomic makeup and may respond to targeted drugs already being tested in clinical trials, according to a large-scale genomic analysis led by researchers at Memorial Sloan-Kettering Cancer Center and other centers within The Cancer Genome Atlas (TCGA) Research Network.
Published in the May 2 issue of the journal Nature, the findings may help doctors more accurately diagnose endometrial cancer and choose treatments that will target genomic mutations in women with endometrioid and uterine serous adenocarcinomas, the two most common types of endometrial cancer. The findings could also guide clinical trials and the development of new drugs.

“These findings have an immediate therapeutic application, as patients with endometrial cancer can be tested routinely to see whether they qualify for a targeted therapy clinical trial,” said Memorial Sloan-Kettering gynecologic oncologist Douglas A. Levine, MD, corresponding author on the study, principal investigator of Memorial Sloan-Kettering’s TCGA Tissue Source Site, and Co-Chair of TCGA’s Endometrial Working Group. “The current landscape of treatment for endometrial cancer is quite chaotic, and this research may provide order to that landscape, especially for more-aggressive endometrial cancers.”

Endometrial cancer, which forms in the tissues lining the uterus, is the fourth leading type of cancer among women and the eighth leading cause of cancer death. Endometrioid tumors are usually less aggressive, while uterine serous tumors are more aggressive.

There has been little agreement among doctors over the best treatment approach following surgery for patients with a high risk of recurrence, with decisions relying largely on a tumor’s pathology. However, it is difficult for pathologists to reliably differentiate high-grade endometrioid tumors from uterine serous tumors.

According to Dr. Levine, incorporating new genomic information into treatment planning could be a great leap forward, helping to make certain that additional therapies are used effectively and only when necessary.

The analysis of 373 endometrial tumors showed that approximately a quarter of high-grade endometrioid tumors have certain types of genomic alterations also found in uterine serous tumors. This suggests that a significant portion of endometrioid tumors should be treated more aggressively after surgery.

Many of the tumors analyzed had mutations in important cancer-related genes and pathways for which targeted therapies are already being tested in clinical trials for other cancers. For example, 84 percent of the tumors have some alteration in the PI3 kinase pathway, which is implicated in many cancers. Additionally, genomic alterations in uterine serous tumors share many features with ovarian serous and triple-negative breast cancers, suggesting opportunity for shared treatments.

Investigators at Memorial Sloan-Kettering are now translating these findings into clinically useful tests that may be applied to ongoing and planned clinical trials.

A project jointly funded by the National Cancer Institute and the National Human Genome Research Institute, TCGA is one of the most comprehensive national efforts to collect and analyze the largest set of tumor samples to date using state-of-the-art genomic and molecular techniques. Memorial Sloan-Kettering currently houses one of TCGA’s Genome Data Analysis Centers, led by computational biologist Chris Sander, PhD, biocomputing manager Nikolaus Schultz, PhD, and molecular pathologist Marc Ladanyi, MD. For the endometrial cancer study, Memorial Sloan-Kettering contributed more than 10 percent of all tissue samples analyzed.

This research was supported by the National Cancer Institute of the National Institutes of Health (NIH) under awards 5U24CA143840-04.

Journalists may contact the Department of Public Affairs for more information.
Telephone: 212-639-3573
E-mail: mediastaff@mskcc.org

Caitlin Hool | EurekAlert!
Further information:
http://www.mskcc.org

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>