Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do krill survive the Antarctic winter?

15.10.2013
Two-months dive expedition with RV Polarstern ends in Cape Town

Scientists from the Alfred Wegener Institute together with international colleagues could analyse the distribution and behaviour of larval and juvenile krill beneath wintery Antarctic sea ice for the first time.


Krill swarm
Ulrich Freier/Alfred-Wegener-Institut

In order to decrypt the life cycle of this ecologically important species 51 scientists and technicians as well as 44 crewmembers sailed the Weddell Sea for 63 days. The expedition, which started in Punta Arenas (Chile) ends in Cape Town (South Africa) on Wednesday, 16 October.

Every winter the sea around Antarctica freezes, forming a new solid surface 19 million square kilometres in extent. This area has nearly twice the size of the U.S., but is so vast scientists have only very rarely visited it. The research icebreaker Polarstern is one of only a few worldwide, which is able to operate in this region even during winter. This is why Polarstern enables searching for clues to one of the big mysteries of Antarctic biology: How do krill survive the winter, when there is little to eat in the water column?

Antarctic Krill (Euphausia superba) are shrimp-like crustaceans that are key to the whole Antarctic food web. The aim of the expedition was to explore the environment under the sea ice in order to throw light on the role it plays in the life cycle of Antractic krill. Therefore chief scientist Dr. Bettina Meyer from the Alfred-Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) put together an international team of experts to study krill under sea ice.

Apart from AWI colleagues it consists of scientists from the Australian Antarctic Division (AAD), the South African Department of Agriculture, Forestry and Fisheries (DAFF), the South African Environmental Observation Network (SAEON), as well as from the South African Universities of Grahamstown, Cape Town, and Stellenbosch and the University of Istanbul (Turkey).

“Krill have the largest biomass of any wild animal on Earth,” says AWI-scientist Meyer. They are a key food source for all the iconic Antarctic species, such as whales, seals and penguins. But there has been a marked decline in krill abundance in recent decades - a decline that seems to be linked to changes in the timing and extent of sea ice formation as parts of Antarctica warm.

Making use of Polarstern’s ability to break into the winter ice pack, the scientists set up dive camps on two different floes and sent a team of scientific divers, as well as a remotely operated mini-submarine (ROV), under the ice to make measurements and record video imagery. “The footage was really extraordinary,” says Meyer. “We saw that the under ice environment can be very complex, with caves and terraces formed where one floe has rafted over another. It’s not one habitat, but a series of micro-habitats, similar to an upside-down reef,” explains Dr. Ulrich Freier, the head of the eight-member scientific diving group.

“The light which penetrates the snow and ice generates a breath taking atmosphere comparable to the colours inside a gothic cathedral,” says Freier, “blues and greens from the ocean, the white ice and browns and yellows, indicating the on-going biological processes already in late winter on the southern hemisphere.” Dr Klaus Meiners from the AAD explains: “The colours are caused by algae growing in the ice.” He used a radiometer (a device that measures the spectra of light falling on it) mounted on the ROV to quantify the algae’s biomass within the ice.

Importantly, the expedition scientists discovered huge swarms of krill larvae and juvenile krill closely associated with the ice. In places the density reached ten thousand animals per square metre. “The distribution is very patchy. They seem to prefer the caves and terraces of the over-rafted areas, which are sheltered regions where the larvae can feed,” says Meyer.

During the day the scientists filmed the krill larvae directly feeding on the ice, but the picture was different at night, when the krill seemed to abandon the ice surface and descend in the upper 20 metres into the water column, perhaps to hide from predators, which come up to the surface at night. “The first time ever we were able to observe this daily migration of young krill stages. It happened at precisely the same time each evening”, explains Dr. Mathias Teschke from the Alfred Wegener Institute. “Their disperse distribution in the water column might prevent them from predation”, presumes chronobiologist Teschke. “This suggests that krill larvae may have an internal clock,” says Teschke, who will analyse the DNA of frozen krill larvae at the AWI to investigate this possibility.

The findings of the expedition confirm the importance of sea ice to the life cycle of krill. But, according to expedition leader Meyer, the timing of sea ice formation may be as important as the extent of the sea ice. “Krill seem to need sea ice which forms early enough in the year to incorporate high amounts of biomass, and to raft and deform to create the micro-habitats the krill prefer.” As scientists try to predict the effects of climate change on the Antarctic ecosystem, they will need to take such complexities into account.

After four and a half months in the wintery Antarctic, Polarstern is going to stay in the shipyard in Cape Town for routine maintenance and repair work. The next Antarctic summer season is going to start with a five weeks expedition to the South Atlantic on 9 November according to plan. Polarstern is going to arrive its homeport Bremerhaven after one and a half years in the Southern hemisphere in April 2014.

Notes for Editors:
You can find printable images on http://www.awi.de/en/news/press_releases/.
Your scientific contact is Dr. habil. Bettina Meyer. Please contact Dr. Folke Mehrtens (phone +49 471 4831-2007, e-mail: medien(at)awi.de) in the Communications Department to arrange appointments as Bettina Meyer is travelling.

Follow the Alfred Wegener Institute on Twitter (https://twitter.com/#!/AWI_de) and Facebook (http://www.facebook.com/AlfredWegenerInstitut) to obtain all current news and information on everyday stories from the life of the Institute.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research icebreaker Polarstern and stations in the Arctic and Antarctic to the international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de
http://www.awi.de/en/news/press_releases

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>