Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Knocking the 'sox' off cancer and lymphatic disorders

21.10.2008
Researchers have identified a gene critical for the development of the lymphatic system in a discovery that will have implications for treatment of cancer and lymphatic disorders and other diseases.

The team, led by Professor Peter Koopman and Dr Mathias François from the Institute for Molecular Bioscience at The University of Queensland (UQ), found that a single gene - Sox18 - triggers the development of the lymphatic vessels.

"The rate at which new lymphatic vessels can form is thought to be one of the key factors in determining how quickly a tumour can spread and thus how severely a patient will be affected by cancer," Professor Koopman said.

"The lymphatic vessels also play a central role in maintaining fluid balance in the body and carrying infection-fighting white blood cells, so greater knowledge about the lymphatic system can offer insights and suggest therapies for a range of diseases."

The team made the discovery, reported today (Monday, October 20) in leading science journal Nature, by examining mice in which Sox18 had been inactivated. They found that the development of lymphatic vessels was massively disrupted.

"We suspected Sox18 might play a critical role in lymphatic vessel formation after observing that mice with one inactivated copy of the gene displayed similar symptoms to humans with a genetic condition that affects the lymphatic system, known as HLT," Professor Koopman said.

"It turns out that Sox18 has a much more important role than we first thought – in fact, it's the master controller of lymphatic vessel development."

The team will now focus on finding genes regulated by Sox18 and determining how this regulation occurs, which may suggest ways of promoting or preventing lymphatic vessel formation.

"If we know how to prevent lymphatic vessels from forming, then we will be a lot closer to halting the spread of tumours through the body. Conversely, if we know how to stimulate the formation of these vessels, then it might be possible to treat diseases such as lymphedema," Professor Koopman said.

Lymphedema occurs when the lymphatic vasculature is impaired, causing a build-up of fluid in part of the body, which leads to painful and dangerous swelling of that body part, and, if left untreated, deformity.

The discovery was the result of three years of research by an international team of scientists from Australia, Italy and Hong Kong, led by UQ and supported by a number of organisations including the Australian Cancer Research Foundation, the National Health and Medical Research Council of Australia, the Heart Foundation of Australia, and the Australian Research Council.

Bronwyn Adams | EurekAlert!
Further information:
http://www.imb.uq.edu.au

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>