Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Knocking the 'sox' off cancer and lymphatic disorders

Researchers have identified a gene critical for the development of the lymphatic system in a discovery that will have implications for treatment of cancer and lymphatic disorders and other diseases.

The team, led by Professor Peter Koopman and Dr Mathias François from the Institute for Molecular Bioscience at The University of Queensland (UQ), found that a single gene - Sox18 - triggers the development of the lymphatic vessels.

"The rate at which new lymphatic vessels can form is thought to be one of the key factors in determining how quickly a tumour can spread and thus how severely a patient will be affected by cancer," Professor Koopman said.

"The lymphatic vessels also play a central role in maintaining fluid balance in the body and carrying infection-fighting white blood cells, so greater knowledge about the lymphatic system can offer insights and suggest therapies for a range of diseases."

The team made the discovery, reported today (Monday, October 20) in leading science journal Nature, by examining mice in which Sox18 had been inactivated. They found that the development of lymphatic vessels was massively disrupted.

"We suspected Sox18 might play a critical role in lymphatic vessel formation after observing that mice with one inactivated copy of the gene displayed similar symptoms to humans with a genetic condition that affects the lymphatic system, known as HLT," Professor Koopman said.

"It turns out that Sox18 has a much more important role than we first thought – in fact, it's the master controller of lymphatic vessel development."

The team will now focus on finding genes regulated by Sox18 and determining how this regulation occurs, which may suggest ways of promoting or preventing lymphatic vessel formation.

"If we know how to prevent lymphatic vessels from forming, then we will be a lot closer to halting the spread of tumours through the body. Conversely, if we know how to stimulate the formation of these vessels, then it might be possible to treat diseases such as lymphedema," Professor Koopman said.

Lymphedema occurs when the lymphatic vasculature is impaired, causing a build-up of fluid in part of the body, which leads to painful and dangerous swelling of that body part, and, if left untreated, deformity.

The discovery was the result of three years of research by an international team of scientists from Australia, Italy and Hong Kong, led by UQ and supported by a number of organisations including the Australian Cancer Research Foundation, the National Health and Medical Research Council of Australia, the Heart Foundation of Australia, and the Australian Research Council.

Bronwyn Adams | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>