Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab chemists help find binding site of protein that allows plant growth

25.09.2013
Using a new and super-sensitive instrument, researchers have discovered where a protein binds to plant cell walls, a process that loosens the cell walls and makes it possible for plants to grow.

Researchers say the discovery could one day lead to bigger harvests of biomass for renewable energy.


This illustration shows the parts of the expansin protein (magenta) that bind to the surface of specific regions of plant cell walls. Larger image. Illustration courtesy of Mei Hong.

Finding that binding target has been a major challenge for structural biologists. That’s because there are only tiny amounts of the protein involved in cell growth and because cell walls are very complex, said Mei Hong, one of the project’s lead researchers who’s an Iowa State University professor of chemistry and a faculty scientist with the U.S. Department of Energy’s Ames Laboratory.

A paper describing the discovery, “Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls,” was just published by the Proceedings of the National Academy of Sciences Online Early Edition. Hong and Daniel Cosgrove, professor and holder of the Eberly Chair in Biology at Penn State University, are the lead authors.

The research team also includes Tuo Wang, an Iowa State graduate student in chemistry and a graduate assistant for the Ames Laboratory; Linghao Zhong, an associate professor of chemistry at Penn State Mont Alto; Yong Bum Park, a post-doctoral scholar in biology at Penn State; plus Marc Caporini and Melanie Rosay of the Bruker BioSpin Corp. in Billerica, Mass.

Three grants from the U.S. Department of Energy supported the research project.

Iowa State’s Hong has long used solid-state nuclear magnetic resonance (NMR) spectroscopy to study structural biology, including the mechanism used by the flu virus to infect host cells. But in this case, that technology wasn’t sensitive enough to identify the binding site of the expansin protein.

So the researchers – working with specialists from the Bruker BioSpin Corp., a manufacturer of scientific instruments – used a technology called dynamic nuclear polarization (DNP), to enhance the sensitivity of spectroscopy instruments. The technology was developed by Robert Griffin, a professor of chemistry at the Massachusetts Institute of Technology.

The researchers studied Arabidopsis thaliana, often used as a model subject in plant science studies, and found the protein binds to specific regions of cellulose microfibrils, the long, parallel chains of cellulose that make up plant cell walls. The action weakens the network formed by a cell wall’s cellulose, hemicellulose and pectins, loosening the cell wall and allowing cell growth.

The researchers found the target site is the part of the cellulose microfibril that is enriched with the hemicellulose xyloglucan. The target site has a different cellulose structure than a plant’s bulk cellulose.

“This result wasn’t trivial to get and we are quite happy that the DNP NMR technology is so useful for understanding this plant biochemistry question,” Hong said.

And yes, she said, “Our result could be exploited for practical benefits.” Knowing where expansin binds to cell walls “might help biochemists design more potent expansins to loosen the cell wall and stimulate plant growth and thus better harvest bioenergy.”

Mei Hong | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

Decoding cement's shape promises greener concrete

08.12.2016 | Materials Sciences

Will Earth still exist 5 billion years from now?

08.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>