Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Iowa State, Ames Lab chemists help find binding site of protein that allows plant growth

25.09.2013
Using a new and super-sensitive instrument, researchers have discovered where a protein binds to plant cell walls, a process that loosens the cell walls and makes it possible for plants to grow.

Researchers say the discovery could one day lead to bigger harvests of biomass for renewable energy.


This illustration shows the parts of the expansin protein (magenta) that bind to the surface of specific regions of plant cell walls. Larger image. Illustration courtesy of Mei Hong.

Finding that binding target has been a major challenge for structural biologists. That’s because there are only tiny amounts of the protein involved in cell growth and because cell walls are very complex, said Mei Hong, one of the project’s lead researchers who’s an Iowa State University professor of chemistry and a faculty scientist with the U.S. Department of Energy’s Ames Laboratory.

A paper describing the discovery, “Sensitivity-enhanced solid-state NMR detection of expansin’s target in plant cell walls,” was just published by the Proceedings of the National Academy of Sciences Online Early Edition. Hong and Daniel Cosgrove, professor and holder of the Eberly Chair in Biology at Penn State University, are the lead authors.

The research team also includes Tuo Wang, an Iowa State graduate student in chemistry and a graduate assistant for the Ames Laboratory; Linghao Zhong, an associate professor of chemistry at Penn State Mont Alto; Yong Bum Park, a post-doctoral scholar in biology at Penn State; plus Marc Caporini and Melanie Rosay of the Bruker BioSpin Corp. in Billerica, Mass.

Three grants from the U.S. Department of Energy supported the research project.

Iowa State’s Hong has long used solid-state nuclear magnetic resonance (NMR) spectroscopy to study structural biology, including the mechanism used by the flu virus to infect host cells. But in this case, that technology wasn’t sensitive enough to identify the binding site of the expansin protein.

So the researchers – working with specialists from the Bruker BioSpin Corp., a manufacturer of scientific instruments – used a technology called dynamic nuclear polarization (DNP), to enhance the sensitivity of spectroscopy instruments. The technology was developed by Robert Griffin, a professor of chemistry at the Massachusetts Institute of Technology.

The researchers studied Arabidopsis thaliana, often used as a model subject in plant science studies, and found the protein binds to specific regions of cellulose microfibrils, the long, parallel chains of cellulose that make up plant cell walls. The action weakens the network formed by a cell wall’s cellulose, hemicellulose and pectins, loosening the cell wall and allowing cell growth.

The researchers found the target site is the part of the cellulose microfibril that is enriched with the hemicellulose xyloglucan. The target site has a different cellulose structure than a plant’s bulk cellulose.

“This result wasn’t trivial to get and we are quite happy that the DNP NMR technology is so useful for understanding this plant biochemistry question,” Hong said.

And yes, she said, “Our result could be exploited for practical benefits.” Knowing where expansin binds to cell walls “might help biochemists design more potent expansins to loosen the cell wall and stimulate plant growth and thus better harvest bioenergy.”

Mei Hong | EurekAlert!
Further information:
http://www.iastate.edu

More articles from Life Sciences:

nachricht Glycosylation: Mapping Uncharted Territory
21.09.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Glycosylation: Mapping Uncharted Territory

21.09.2017 | Life Sciences

Highly precise wiring in the Cerebral Cortex

21.09.2017 | Health and Medicine

Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?

21.09.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>