Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the immune system

07.01.2013
Immune cells undergo complex processes during their development. If errors occur, the consequences for those who are affected can be fatal. Scientists from the University of Würzburg have now uncovered new details of what happens. These could be a target for new therapies.
As recently as a few decades ago, the following response was feared: following an organ transplant, the patient’s immune system recognizes the transplanted organ as “foreign” and therefore attacks and rejects it. It was not until the discovery, nearly 30 years ago, that the mycotoxin cyclosporin A can prevent the rejection of a transplanted organ that this response lost its capacity to terrify.

“In T cells, which are important cells in the immune system, cyclosporin A inhibits the activation of a group of transcription factors called NFAT factors,” explains Professor Edgar Serfling, a researcher at the University of Würzburg’s Institute of Pathology. At the time, this finding was tantamount to a “revolution in transplantation medicine”. “Thousands of patients owe their lives to cyclosporin A and the inhibition of NFAT factors,” says Serfling.

Now Serfling, his Research Associate Amiya K. Patra, and other scientists at the University of Würzburg have uncovered new details of the interaction between transcription factors and immune cells. Their work has just been published online in the journal Nature Immunology.

The development of T cells

To enable T cells to recognize transplanted organs or pathogenic viruses and bacteria as foreign material, they first have to be “educated”. This education takes place in the thymus – hence the name T cells. There, the immigrant progenitor cells of the cells later known as thymocytes are subjected to various selection processes in which NFAT factors also play an important role. “If errors occur in these processes, this often leads to autoimmune diseases, such as multiple sclerosis, psoriasis, and rheumatism,” explains Serfling. In multiple sclerosis, for example, autoreactive T cells in the brain attack the myelin sheaths of nerve cells, causing the fatal symptoms of this disease.

In the thymus, thymocyte progenitors develop special receptors on their surface where the body’s own transmitter interleukin 7 (IL-7) can dock. After it has docked, IL-7 transmits signals that activate or deactivate numerous genes in the cells. The progenitor cells subsequently divide and evolve into mature thymocytes.
New insights into the development process

As Amiya Patra has now revealed, NFAT factors also play a significant part in these processes: “If a specific NFAT factor is deactivated in mice, the thymocytes remain in their earliest stage of development and no thymus is created,” explains Serfling. However, if the early steps of thymocyte development that are controlled by IL-7 proceed without disruption, the cell soon forms other receptors that are important to its development and the IL-7 receptor disappears.

Though it is not just the absence of the NFAT factor that disrupts cell development; an excess also messes up the process: the development of thymocytes stops, but at a later stage in this case, and again with fatal consequences: “Specific progenitor receptors are created in an uncontrolled manner, with the result that the person affected develops leukemia, and NFAT factors play a critical role in this too,” explains Serfling.

Approach for new therapies

Through their work the Würzburg team has demonstrated that NFAT factors are critically involved not only in the recognition of the body’s own tissue and in immune responses, but also in the “education” of T cells in the thymus. They therefore represent a target structure that will play a key role in therapies for autoimmune diseases and leukemia in the future.

“An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development”. Amiya K Patra, Andris Avots, René P Zahedi, Thomas Schüler, Albert Sickmann, Ursula Bommhardt & Edgar Serfling; Nature Immunology, doi:10.1038/ni.2507

Contact

Prof. Dr. Edgar Serfling, T: +49 (0)931 31-81207,
e-mail: serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht New Technique Maps Elusive Chemical Markers on Proteins
03.07.2015 | Salk Institute for Biological Studies

nachricht New approach to targeted cancer therapy
03.07.2015 | CECAD - Cluster of Excellence at the University of Cologne

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Viaducts with wind turbines, the new renewable energy source

Wind turbines could be installed under some of the biggest bridges on the road network to produce electricity. So it is confirmed by calculations carried out by a European researchers team, that have taken a viaduct in the Canary Islands as a reference. This concept could be applied in heavily built-up territories or natural areas with new constructions limitations.

The Juncal Viaduct, in Gran Canaria, has served as a reference for Spanish and British researchers to verify that the wind blowing between the pillars on this...

Im Focus: X-rays and electrons join forces to map catalytic reactions in real-time

New technique combines electron microscopy and synchrotron X-rays to track chemical reactions under real operating conditions

A new technique pioneered at the U.S. Department of Energy's Brookhaven National Laboratory reveals atomic-scale changes during catalytic reactions in real...

Im Focus: Iron: A biological element?

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and a half billion years ago.

Think of an object made of iron: An I-beam, a car frame, a nail. Now imagine that half of the iron in that object owes its existence to bacteria living two and...

Im Focus: Thousands of Droplets for Diagnostics

Researchers develop new method enabling DNA molecules to be counted in just 30 minutes

A team of scientists including PhD student Friedrich Schuler from the Laboratory of MEMS Applications at the Department of Microsystems Engineering (IMTEK) of...

Im Focus: Bionic eye clinical trial results show long-term safety, efficacy vision-restoring implant

Patients using Argus II experienced significant improvement in visual function and quality of life

The three-year clinical trial results of the retinal implant popularly known as the "bionic eye," have proven the long-term efficacy, safety and reliability of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

World Conference on Regenerative Medicine: Abstract Submission has been extended to 24 June

16.06.2015 | Event News

MUSE hosting Europe’s largest science communication conference

11.06.2015 | Event News

 
Latest News

Siemens receives order for offshore wind power plant in Great Britain

03.07.2015 | Press release

'Déjà vu all over again:' Research shows 'mulch fungus' causes turfgrass disease

03.07.2015 | Agricultural and Forestry Science

Discovery points to a new path toward a universal flu vaccine

03.07.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>