Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Investigating the immune system

07.01.2013
Immune cells undergo complex processes during their development. If errors occur, the consequences for those who are affected can be fatal. Scientists from the University of Würzburg have now uncovered new details of what happens. These could be a target for new therapies.
As recently as a few decades ago, the following response was feared: following an organ transplant, the patient’s immune system recognizes the transplanted organ as “foreign” and therefore attacks and rejects it. It was not until the discovery, nearly 30 years ago, that the mycotoxin cyclosporin A can prevent the rejection of a transplanted organ that this response lost its capacity to terrify.

“In T cells, which are important cells in the immune system, cyclosporin A inhibits the activation of a group of transcription factors called NFAT factors,” explains Professor Edgar Serfling, a researcher at the University of Würzburg’s Institute of Pathology. At the time, this finding was tantamount to a “revolution in transplantation medicine”. “Thousands of patients owe their lives to cyclosporin A and the inhibition of NFAT factors,” says Serfling.

Now Serfling, his Research Associate Amiya K. Patra, and other scientists at the University of Würzburg have uncovered new details of the interaction between transcription factors and immune cells. Their work has just been published online in the journal Nature Immunology.

The development of T cells

To enable T cells to recognize transplanted organs or pathogenic viruses and bacteria as foreign material, they first have to be “educated”. This education takes place in the thymus – hence the name T cells. There, the immigrant progenitor cells of the cells later known as thymocytes are subjected to various selection processes in which NFAT factors also play an important role. “If errors occur in these processes, this often leads to autoimmune diseases, such as multiple sclerosis, psoriasis, and rheumatism,” explains Serfling. In multiple sclerosis, for example, autoreactive T cells in the brain attack the myelin sheaths of nerve cells, causing the fatal symptoms of this disease.

In the thymus, thymocyte progenitors develop special receptors on their surface where the body’s own transmitter interleukin 7 (IL-7) can dock. After it has docked, IL-7 transmits signals that activate or deactivate numerous genes in the cells. The progenitor cells subsequently divide and evolve into mature thymocytes.
New insights into the development process

As Amiya Patra has now revealed, NFAT factors also play a significant part in these processes: “If a specific NFAT factor is deactivated in mice, the thymocytes remain in their earliest stage of development and no thymus is created,” explains Serfling. However, if the early steps of thymocyte development that are controlled by IL-7 proceed without disruption, the cell soon forms other receptors that are important to its development and the IL-7 receptor disappears.

Though it is not just the absence of the NFAT factor that disrupts cell development; an excess also messes up the process: the development of thymocytes stops, but at a later stage in this case, and again with fatal consequences: “Specific progenitor receptors are created in an uncontrolled manner, with the result that the person affected develops leukemia, and NFAT factors play a critical role in this too,” explains Serfling.

Approach for new therapies

Through their work the Würzburg team has demonstrated that NFAT factors are critically involved not only in the recognition of the body’s own tissue and in immune responses, but also in the “education” of T cells in the thymus. They therefore represent a target structure that will play a key role in therapies for autoimmune diseases and leukemia in the future.

“An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development”. Amiya K Patra, Andris Avots, René P Zahedi, Thomas Schüler, Albert Sickmann, Ursula Bommhardt & Edgar Serfling; Nature Immunology, doi:10.1038/ni.2507

Contact

Prof. Dr. Edgar Serfling, T: +49 (0)931 31-81207,
e-mail: serfling.e@mail.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>