Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Intestinal cell defense mechanism against bacteria

31.05.2011
Molecular mechanism of selected autophagy elucidated

Salmonella is widely prevalent in the animal kingdom. The reason we do not suffer from severe intestinal infections very often is due to our body's defence system, which manages to digest invading bacteria.

This is why, generally speaking, a healthy human being will only fall ill if he consumes more than 100.000 salmonella bacteria via a contaminated food source, such as eggs or meat. An international team of researchers, led by Prof. Ivan Dikic from the Goethe University in Frankfurt has now found out how body cells recognise salmonella and render it harmless.

Understanding this process at a molecular level is crucial in identifying new targets for treatment. Tropical and sub-tropical countries in particular, where various sub-species of salmonella are common, are experiencing a rapid increase in resistance to antibiotics, with children at greatest risk.

Salmonella infection begins with bacteria entering the epithelial cells of the intestinal mucosa. To prevent them multiplying there, special cell organelles, called autophagosomes are activated. These encircle the invaders and then become absorbed in other organelles – lysosomes – that contain certain special digestive enzymes, which break down the bacteria into their constituent parts. But how exactly do the autophagosomes recognise salmonella? Prof. Ivan Dikic and his research group at the Biochemistry Institute II have now shed light on this mechanism.

As reported in a current article in the scientific journal "Science", the salmonella are marked as 'waste material' by the molecule ubiquitin. In order for the autophagosomes to become active, the marked bacteria have to bind to another molecule – LC3 – on the autophagosomal membrane. Here, the protein optineurin plays a key role, linking the marked Salmonella to the autophagosmal LC3, thereby setting off a process of selective autophagy. But optineurin becomes active as a link only after being chemically modified by an enzyme, (in this case it is phosphorylated by the protein kinase TBK1). "We suspect that phosphorylation acts as a regulated switch to trigger selective autophagy of bacteria but might also prove significant in other cargoes like protein aggregates or damaged mitochondria" explains Prof. Ivan Dikic, underlining the importance of these findings. It is thought that impaired autophagy processes may be implicated in, among other things, the development of cancer as well as neurodegenerative diseases.

In the area of infectious diseases, these findings are particularly relevant in view of the fact that gastrointestinal disease caused by Salmonella enterica has rapidly increased since the mid-1980s. In Germany, approx. 30,000 cases were reported to the health authorities in 1985, but by 2005 the figure has risen to 52,000. Worldwide, 94 million people fall ill each year with acute gastroenteritis, and 155,000 of these die. Typhoid, a disease also caused by Salmonella, affects 16 million people annually and mortality rates reach 200,000, with children in particular falling victim to the disease. Bacteria are becoming increasingly resistant to antibiotics so that the potential for treating disease is limited. Chloramphenicol, a formerly popular broad-spectrum antibiotic, is now ineffective, and even Fluoroquinolones, currently a commonly prescribed antibiotic, is proving inadequate in fighting bacteria. As co-author Prof. Dirk Bumann from the Biozentrum at Basel University puts it: "There is a pressing need to find new forms of treatment for infectious diseases. A better understanding of how the body's own defence mechanism makes use of autophagy will certainly help."

Publication: Philipp Wild et al: Phosphorylation of the Autophagy Receptor Optineurin restricts Salmonella growth, Science 26th May 2011 advanced online publication (Science DOI: 10.1126/science.1205405)

Prof. Ivan Dikic | EurekAlert!
Further information:
http://www.uni-frankfurt.de
http://www.biochem2.de

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>