Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

International collaboration finds 11 new Alzheimer's genes to target for drug discovery

28.10.2013
Study yields fresh look at role of immune system in Alzheimer's

University of Miami Miller School of Medicine researchers played a key role in the largest international Alzheimer's disease genetics collaboration to date, which identified 11 new regions of the genome that contribute to late-onset Alzheimer's disease, doubling the number of potential genetics-based therapeutic targets to investigate.

Published October 27 in Nature Genetics, the study gives a broader view of the genetic factors contributing to Alzheimer's and expands the understanding of the disease to new areas, including the immune system, where a genetic overlap with other neurodegenerative diseases, including multiple sclerosis and Parkinson's disease, was identified.

In 2011, the world's four largest research consortia on the genetics of Alzheimer's disease joined efforts to discover and map the genes that contribute to Alzheimer's, forming the International Genomics of Alzheimer's Project (IGAP). The team collected genetic information from 25,500 Alzheimer's disease patients and 49,038 controls from 15 countries to perform this two-stage meta-analysis that resulted in the discovery of 11 new genes in addition to those already known, and the identification of 13 other genes, yet to be validated.

Margaret A. Pericak-Vance, Ph.D., the Dr. John T. Macdonald Foundation Professor of Human Genomics and Director of the John P. Hussman Institute for Human Genomics at the Miller School, and Lindsay A. Farrer, Ph.D., from Boston University, led the analysis teams for the American Alzheimer's Disease Genetics Consortium, which includes nearly all of the nation's researchers working on the genetics of Alzheimer's, as well as many investigators and resources of the 29 federally funded Alzheimer's Disease Centers.

Several of the genes the researchers identified confirmed known biological pathways of Alzheimer's disease, including the role of the amyloid (SORL1, CASS4) and tau (CASS4, FERMT2) pathways. Newly discovered genes involved in the immune response and inflammation (HLA-DRB5/DRB1, INPP5D, MEF2C) reinforced a pathway implied by previous work (on CR1, TREM2). Additional genes related to cell migration (PTK2B), lipid transport and endocytosis (SORL1) also were confirmed, and new hypotheses emerged related to hippocampal synaptic function (MEF2C, PTK2B), the cytoskeleton and axonal transport (CELF1, NME8, CASS4), as well as myeloid and microglial cell functions (INPP5D).

One of the more significant new associations was found in the HLA-DRB5/DRB1 region, one of the most complex parts of the genome, which plays a role in the immune system and inflammatory response. It also has been associated with multiple sclerosis and Parkinson's disease, suggesting that the diseases where abnormal proteins accumulate in the brain may have a common mechanism involved, and possibly a common drug target.

"The discovery of novel pathways is very encouraging considering the limited success of Alzheimer's disease drugs tested so far," Pericak-Vance said. "Our findings bring us closer toward identifying new drug targets for Alzheimer's and other neurodegenerative diseases. We'll continue to expand and analyze our data set with this incredible group so that we can better understand the genetic influences on this devastating disease, and find new medical and therapeutic interventions."

Other Miller School co-authors include the Hussman Institute's Gary Beecham, Ph.D., assistant professor of human genetics; Eden R. Martin, Ph.D., professor of human genetics; John R. Gilbert, Ph.D., professor of human genetics; Kara Hamilton-Nelson, M.S., project manager for research support; and Brian Kunkle, Ph.D., postdoctoral associate; and Amanda Meyers, Ph.D., associate professor of psychiatry and behavioral sciences.

The IGAP includes contributions from the Alzheimer's Disease Genetics Consortium (ADGC) in the United States, which is led by Gerard Schellenberg, Ph.D., Perelman School of Medicine at the University of Pennsylvania; the European Alzheimer's Disease Initiative in France, led by Philippe Amouyel, M.D., Ph.D., at the Institute Pasteur de Lille and Lille University; the Genetic and Environmental Risk in Alzheimer's Disease from the United Kingdom, led by Julie Williams, Ph.D., at Cardiff University; the neurology subgroup of the Cohorts for Heart and Aging in Genomic Epidemiology, led by Sudha Seshadri, M.D., at Boston University School of Medicine; as well as teams from the University of Miami, Vanderbilt University, and Columbia University in the United States, among others.

Alexandra Bassil | EurekAlert!
Further information:
http://www.miami.edu

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>