Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infected butterflies lead geneticists up the garden path. UFZ researchers illustrate the weaknesses of DNA barcoding

07.11.2013
For animal species that cannot be distinguished using their external characteristics, genetic techniques such as DNA barcoding can help to identify cryptic species.

An international team of researchers led by the Helmholtz Center for Environmental Research (UFZ) has brought out an article in the open-access journal PLOS ONE demonstrating how a bacterial infection can mimic cryptic speciation in butterflies. To avoid false results in the future, scientists recommend more in-depth genetic studies.


Phengaris nausithous (Dusky Large Blue): Female laying eggs on a great burnet flower head (Sanguisorba officinalis). Photo: Josef Settele/UFZ


Phengaris nausithous (Dusky Large Blue), pair copulating on a great burnet flower head (Sanguisorba officinalis). Photo: Josef Settele/UFZ

Some animal species look so alike that external characteristics do not provide sufficient information about whether they belong to the same species or not. "The animal species themselves on the other hand can certainly tell the difference, as it is crucial for their reproductive success", says Sylvia Ritter, PhD student from the Department of Community Ecology at the UFZ.

In addition to external characteristics, odours and behaviour also play an important role. However, scientific investigations on species-specific odours and behaviour are very complex. "This is why for species that cannot be differentiated using standard methods, genetic techniques such as DNA barcoding are used", explains UFZ researcher Dr. Martin Wiemers.

With DNA barcoding, certain sections of the mitochondrial DNA (mtDNA) are examined - that is the genetic makeup, which is not found in the nucleus of the cell, but located in the mitochondria which are the cell's organelles residing in the cytoplasm. If divergences of more than two per cent are found between two potentially different species, then this is regarded as an indication of so-called cryptic speciation.

"Genetic studies of two parasitic butterfly species from the same genus of Large Blues suspect cryptic speciation, as great divergences were found in their mtDNA", says Wiemers. Together with Sylvia Ritter (first author of the article), the team supporting Martin Wiemers, Walter Durka, Josef Settele and Stefan Michalski has conducted studies on the Scarce Large Blue (Phengaris teleius) and the Dusky Large Blue (Phengaris nausithous) across their entire Eurasian distribution range. In addition to sections of mtDNA used in DNA barcoding, the researchers also compared nuclear DNA found in the nucleus of the cell. Furthermore, individuals were tested for infections with the so-called Wolbachia bacteria, as an infection with these bacteria can lead to the fact that the mtDNA of infected individuals will strongly differ from the mtDNA of non-infected Large Blues.

"We found very strong divergences in the mtDNA, which can be an indication of cryptic speciation. However, in the nuclear DNA markers there were no such differences, which would be near to impossible if we were dealing with different species", says Ritter. "We were able to find a significant correlation between the differences in mtDNA and Wolbachia infections. Hence, Wolbachia infections can be said to mimic cryptic speciation."

In some insect groups up to 70 per cent of all species are infected with Wolbachia bacteria. Up until now however there has been no standard testing for Wolbachia infections when DNA barcoding was carried out. "This could lead to cryptic species being found that do not actually exist. Particularly in the case of insects, we therefore recommend the additional testing of nuclear DNA so that investigations on cryptic species do not lead to false results. For species conservation it is also important to be able to differentiate between species because with their different characteristics they mostly have different habitat requirements", says Wiemers.

The Large Blues under investigation are particularly vulnerable species, since they not only depend on a specific food plant - the great burnet (Sanguisorba officinalis), but also on specific ant species. The larvae of these Large Blues feed on the eggs and larvae of these host ants and even adopt a „cuckoo strategy" whereby they mimic the ants´ chemical substances in order to get the ants to feed them. Even the slightest changes in land use can lead to an absence in the necessary combination of food plant and host ants, causing the Large Blues to vanish from the ecosystem completely. According to Wiemers: "If we are to conserve a species, we first have to recognise what its needs are. A prerequisite for this on the other hand is to know which species we are dealing with. Only in this way can we proceed to implement meaningful measures for species conservation and species reintroduction programs."

Nicole Silbermann

Publication:
Sylvia Ritter, Stefan G. Michalski, Josef Settele, Martin Wiemers, Zdenek F. Fric, Marcin Sielezniew, Martina Šašiæ, Yves Rozier, Walter Durka (2013): Wolbachia infections mimic cryptic speciation in two parasitic butterfly species, Phengaris teleius and P. nausithous (Lepidoptera: Lycaenidae). PLoS ONE . e0078107
http://dx.plos.org/10.1371/journal.pone.0078107
http://www.plosone.org/#recent
http://www.plosone.org/search/simple?searchName=&weekly=&monthly=&startPage=0&pageSize=15&filterArticleType=

&filterKeyword=&resultView=&query="Martin+Wiemers"

Links:
Citizen Science Project „Finde den Wiesenknopf": http://www.ufz.de/wiesenknopf/
Film „Maculinea - threatened butterflies": http://www.youtube.com/watch?v=e9jl2nC3X0U
Further information:
Dr. Martin Wiemers
Helmholtz Center for Environmental Research (UFZ)
Contact because of a conference abroad via
e-mail: martin.wiemers@ufz.de
or via
Tilo Arnhold, Susanne Hufe (UFZ Press office)
Tel.: +49-341-235-1635, -1630
http://www.ufz.de/index.php?en=640
At the Helmholtz Centre for Environmental Research (UFZ) scientists are interested in the wide-ranging causes and impacts of environmental change. They conduct research on water resources, biodiversity, the impacts of climate change and adaptation strategies, environmental and biotechnologies, bioenergy, the behaviour of chemicals in the environment and their effects on health, modelling and sociological issues. Their guiding motto: our research serves the sustainable use of natural resources and helps towards long-term food and livelihood security in the face of global change. The UFZ has over 1100 employees working in Leipzig, Halle und Magdeburg. It is funded by the federal government, as well as by the State of Saxony and Saxony Anhalt. http://www.ufz.de/

The Helmholtz Association contributes to finding solutions for large and pressing issues in society, science and the economy through excellence in the following six areas of research: energy, earth and the environment, health, key technologies, structure of matter, transport and aerospace. With almost 35,000 employees and coworkers in 18 research centres and an annual budget of approx. 3.8 billion Euros the Helmholtz Association is the largest scientific organization in Germany. Work is conducted in the tradition of the renowned natural scientist Hermann von Helmholtz (1821-1894). http://www.helmholtz.de/en/

Nicole Silbermann/Tilo Arnhold | UFZ News
Further information:
http://www.ufz.de/index.php?en=32150

More articles from Life Sciences:

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

nachricht Researchers discover specific tumor environment that triggers cells to metastasize
22.11.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

UCLA engineers use deep learning to reconstruct holograms and improve optical microscopy

22.11.2017 | Medical Engineering

Watching atoms move in hybrid perovskite crystals reveals clues to improving solar cells

22.11.2017 | Materials Sciences

New study points the way to therapy for rare cancer that targets the young

22.11.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>