Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Induced Neural Stem Cells: Not Quite Ready for Prime Time

16.02.2010
The great promise of induced pluripotent stem cells is that the all-purpose cells seem capable of performing all the same tricks as embryonic stem cells, but without the controversy.

However, a new study published this week (Feb. 15) in the Proceedings of the National Academy of Sciences comparing the ability of induced cells and embryonic cells to morph into the cells of the brain has found that induced cells — even those free of the genetic factors used to program their all-purpose qualities — differentiate less efficiently and faithfully than their embryonic counterparts.

The finding that induced cells are less predictable means there are more kinks to work out before they can be used reliably in a clinical setting, says Su-Chun Zhang, the senior author of the new study and a professor in the University of Wisconsin-Madison School of Medicine and Public Health.

“Embryonic stem cells can pretty much be predicted,” says Zhang. “Induced cells cannot. That means that at this point there is still some work to be done to generate ideal induced pluripotent stem cells for application.”

Scientists in the burgeoning field of regenerative medicine are pinning their hopes on induced stem cells because they offer advantages over embryonic stem cells, not the least of which is the fact that they do not need to be derived from early-stage human embryos.

The new Wisconsin study compared the ability of five embryonic stem cell lines with 12 induced cell lines coaxed into being using different methods. Embryonic stem cells are considered the “gold standard” for all pluripotent stem cells, which are cells that can differentiate into all of the 220 cell types in the human body.

Zhang’s group, led by researcher Baoyang Hu, found that the induced cells differentiate into progenitor neural cells and further into the different kinds of functional neurons that make up the brain. However, that they do not faithfully mirror all the differentiation capabilities of embryonic cells suggests that there are unknown factors at play that may limit their use in terms of modeling disease in the laboratory, one of the most important potential early applications of stem cell technology. Such unknowns would also limit their use in clinical settings for such things as cell transplants.

Intriguingly, the new study suggests the presence or absence of the genes used to reprogram skin cells to become the blank slate pluripotent cells makes no difference in terms of their capacity to differentiate. Some of the induced stem cell lines tested in the study were made using techniques that bypassed the use of genes that had been used to reprogram skin cells to become pluripotent stem cells.

It was predicted, Zhang explains, that the absence of exotic genetic factors would result in cells essentially identical to embryonic stem cells. “It is totally surprising that doesn’t happen at all,” says Zhang. “It tells us the techniques for generating induced pluripotent stem cells are still not optimal. There is room for improvement.”

Despite their unpredictability, Zhang notes that induced stem cells can still be used to make pure populations of specific types of cells, making them useful for some applications such as testing potential new drugs for efficacy and toxicity. He also noted that the limitations identified by his group are technical issues likely to be resolved relatively quickly.

“It appears to be a technical issue,” he says. “Technical things can usually be overcome.”

The key, he explains, is determining what things are at play that make the induced cells different.

The study was carried out with support from the National Institutes of Health and the ALS Association. Also contributing to the study were James Thomson, a UW-Madison professor of anatomy and director of regenerative biology for the Morgridge Institute for Research, and Junying Yu of Cellular Dynamics International.

CONTACT: Su-Chun Zhang, 608-265-2543, zhang@waisman.wisc.edu

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>