Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Induced Neural Stem Cells: Not Quite Ready for Prime Time

16.02.2010
The great promise of induced pluripotent stem cells is that the all-purpose cells seem capable of performing all the same tricks as embryonic stem cells, but without the controversy.

However, a new study published this week (Feb. 15) in the Proceedings of the National Academy of Sciences comparing the ability of induced cells and embryonic cells to morph into the cells of the brain has found that induced cells — even those free of the genetic factors used to program their all-purpose qualities — differentiate less efficiently and faithfully than their embryonic counterparts.

The finding that induced cells are less predictable means there are more kinks to work out before they can be used reliably in a clinical setting, says Su-Chun Zhang, the senior author of the new study and a professor in the University of Wisconsin-Madison School of Medicine and Public Health.

“Embryonic stem cells can pretty much be predicted,” says Zhang. “Induced cells cannot. That means that at this point there is still some work to be done to generate ideal induced pluripotent stem cells for application.”

Scientists in the burgeoning field of regenerative medicine are pinning their hopes on induced stem cells because they offer advantages over embryonic stem cells, not the least of which is the fact that they do not need to be derived from early-stage human embryos.

The new Wisconsin study compared the ability of five embryonic stem cell lines with 12 induced cell lines coaxed into being using different methods. Embryonic stem cells are considered the “gold standard” for all pluripotent stem cells, which are cells that can differentiate into all of the 220 cell types in the human body.

Zhang’s group, led by researcher Baoyang Hu, found that the induced cells differentiate into progenitor neural cells and further into the different kinds of functional neurons that make up the brain. However, that they do not faithfully mirror all the differentiation capabilities of embryonic cells suggests that there are unknown factors at play that may limit their use in terms of modeling disease in the laboratory, one of the most important potential early applications of stem cell technology. Such unknowns would also limit their use in clinical settings for such things as cell transplants.

Intriguingly, the new study suggests the presence or absence of the genes used to reprogram skin cells to become the blank slate pluripotent cells makes no difference in terms of their capacity to differentiate. Some of the induced stem cell lines tested in the study were made using techniques that bypassed the use of genes that had been used to reprogram skin cells to become pluripotent stem cells.

It was predicted, Zhang explains, that the absence of exotic genetic factors would result in cells essentially identical to embryonic stem cells. “It is totally surprising that doesn’t happen at all,” says Zhang. “It tells us the techniques for generating induced pluripotent stem cells are still not optimal. There is room for improvement.”

Despite their unpredictability, Zhang notes that induced stem cells can still be used to make pure populations of specific types of cells, making them useful for some applications such as testing potential new drugs for efficacy and toxicity. He also noted that the limitations identified by his group are technical issues likely to be resolved relatively quickly.

“It appears to be a technical issue,” he says. “Technical things can usually be overcome.”

The key, he explains, is determining what things are at play that make the induced cells different.

The study was carried out with support from the National Institutes of Health and the ALS Association. Also contributing to the study were James Thomson, a UW-Madison professor of anatomy and director of regenerative biology for the Morgridge Institute for Research, and Junying Yu of Cellular Dynamics International.

CONTACT: Su-Chun Zhang, 608-265-2543, zhang@waisman.wisc.edu

Terry Devitt | Newswise Science News
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

New material for splitting water

19.06.2018 | Physics and Astronomy

Cementless fly ash binder makes concrete 'green'

19.06.2018 | Materials Sciences

Overdosing on Calcium

19.06.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>