Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the Odds

07.12.2009
A new method for bone marrow transplantation from mismatched donors restores the immune system faster

Although bone marrow transplants have long been standard for acute leukemia, current treatments still rely on exact matches between donor and patient.

Now, scientists at the University of Perugia, Italy, and the Weizmann Institute of Science have improved on a method of transplanting bone marrow-based stem cells from a mismatched donor, making it safer for use when no exact match exists. They were invited to present their findings at the recent annual American Society of Hematology conference in New Orleans.

More than a decade ago, Prof. Yair Reisner of the Weizmann Institute's Immunology Department pioneered a method for transplanting stem cells from family members who are a partial match. Based on these studies (in mice), he joined forces with Prof. Massimo F. Martelli, Head of the Hematology and Clinical Immunology Section at the University of Perugia, to demonstrate in more than 300 patients that the cure rate of these so-called "mega dose" transplants is similar to that of transplants from matched, unrelated donors picked from international bone marrow donor registries. To combat the body's tendency to reject the foreign cells, these stem cells are stripped of immune cells called T cells and given in high doses that overwhelm the host's own immune system.

Although removing donor T cells from the bone marrow reduces the risk of graft-versus-host disease - caused when the T cells attack the recipient's tissues - the immune system is slow to recover after the transplant, leaving the patient at risk of serious infection. Doctors are faced with a difficult choice: Either remove the T cells from the bone marrow, increasing the risk of infection, or leave the T cells in the graft, putting the patient at risk for lethal graft-versus-host disease.

Martelli, working with Reisner, has now found a way to facilitate the recovery of the immune responses in recipients of T cell-depleted bone marrow transplants. In a clinical trial, 25 of 26 leukemia and lymphoma patients who received mismatched mega dose T cell-depleted stem cell transplants from relatives showed prompt immune recovery, and their immune systems were functioning well several months later.

The scientists knew that certain regulatory T cells (T regs), rather than causing graft-versus-host disease, could actually help to prevent it in mice. T regs have also been shown to keep other immune responses in check, including preventing autoimmune attacks on the body's own cells. In the present study, after purifying T regs from the donor's blood, the cells were infused intravenously into the cancer patients, who had previously undergone standard radiation and chemotherapy treatments. Three days later, the patients received the donor stem cells, along with another kind of T cell - those that fight disease.

The patients who underwent this procedure showed quick, lasting improvements in immune activity; most experienced no symptoms even though they received large doses of the T cells that are generally associated with lethal graft-versus-host disease.

Further follow up on these patients and additional clinical trials will be needed before the procedure can be widely adopted. But these results strongly suggest that T regs used in mega-dose stem cells will further enhance the cure rate for bone marrow transplant patients without a matched donor in the family.

Prof. Yair Reisner's research is supported by the M.D. Moross Institute for Cancer Research; the Kirk Center for Childhood Cancer and Immunological Disorders; the Mario Negri Institute for Pharmacological Research Weizmann Institute of Science Exchange Program; the Gabrielle Rich Center for Transplantation Biology Research; the Russell Berrie Foundation; and Mr. and Mrs. Seymour Spira, Palm Beach Gardens, FL.

Prof. Reisner is the incumbent of the Henry H. Drake Professorial Chair in Immunology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://ash.confex.com/ash/2009/webprogram/Paper18555.html
http://wis-wander.weizmann.ac.il
http://www.eurekalert.org

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>