Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Improving the Odds

07.12.2009
A new method for bone marrow transplantation from mismatched donors restores the immune system faster

Although bone marrow transplants have long been standard for acute leukemia, current treatments still rely on exact matches between donor and patient.

Now, scientists at the University of Perugia, Italy, and the Weizmann Institute of Science have improved on a method of transplanting bone marrow-based stem cells from a mismatched donor, making it safer for use when no exact match exists. They were invited to present their findings at the recent annual American Society of Hematology conference in New Orleans.

More than a decade ago, Prof. Yair Reisner of the Weizmann Institute's Immunology Department pioneered a method for transplanting stem cells from family members who are a partial match. Based on these studies (in mice), he joined forces with Prof. Massimo F. Martelli, Head of the Hematology and Clinical Immunology Section at the University of Perugia, to demonstrate in more than 300 patients that the cure rate of these so-called "mega dose" transplants is similar to that of transplants from matched, unrelated donors picked from international bone marrow donor registries. To combat the body's tendency to reject the foreign cells, these stem cells are stripped of immune cells called T cells and given in high doses that overwhelm the host's own immune system.

Although removing donor T cells from the bone marrow reduces the risk of graft-versus-host disease - caused when the T cells attack the recipient's tissues - the immune system is slow to recover after the transplant, leaving the patient at risk of serious infection. Doctors are faced with a difficult choice: Either remove the T cells from the bone marrow, increasing the risk of infection, or leave the T cells in the graft, putting the patient at risk for lethal graft-versus-host disease.

Martelli, working with Reisner, has now found a way to facilitate the recovery of the immune responses in recipients of T cell-depleted bone marrow transplants. In a clinical trial, 25 of 26 leukemia and lymphoma patients who received mismatched mega dose T cell-depleted stem cell transplants from relatives showed prompt immune recovery, and their immune systems were functioning well several months later.

The scientists knew that certain regulatory T cells (T regs), rather than causing graft-versus-host disease, could actually help to prevent it in mice. T regs have also been shown to keep other immune responses in check, including preventing autoimmune attacks on the body's own cells. In the present study, after purifying T regs from the donor's blood, the cells were infused intravenously into the cancer patients, who had previously undergone standard radiation and chemotherapy treatments. Three days later, the patients received the donor stem cells, along with another kind of T cell - those that fight disease.

The patients who underwent this procedure showed quick, lasting improvements in immune activity; most experienced no symptoms even though they received large doses of the T cells that are generally associated with lethal graft-versus-host disease.

Further follow up on these patients and additional clinical trials will be needed before the procedure can be widely adopted. But these results strongly suggest that T regs used in mega-dose stem cells will further enhance the cure rate for bone marrow transplant patients without a matched donor in the family.

Prof. Yair Reisner's research is supported by the M.D. Moross Institute for Cancer Research; the Kirk Center for Childhood Cancer and Immunological Disorders; the Mario Negri Institute for Pharmacological Research Weizmann Institute of Science Exchange Program; the Gabrielle Rich Center for Transplantation Biology Research; the Russell Berrie Foundation; and Mr. and Mrs. Seymour Spira, Palm Beach Gardens, FL.

Prof. Reisner is the incumbent of the Henry H. Drake Professorial Chair in Immunology.

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,600 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://ash.confex.com/ash/2009/webprogram/Paper18555.html
http://wis-wander.weizmann.ac.il
http://www.eurekalert.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>