Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An Improved Method for calculating Tumour Growth

01.03.2010
When treating cancer, it is an advantage to know the rate of growth of the cancer tumour. The standard method currently used to determine tumour growth, however, is erroneous. This is the conclusion of scientists at the University of Gothenburg, Sweden, who have developed a new model.

The principal reason that patients die of cancer is the spread of cancer cells through the body to form new tumours known as metastases. These metastases are initially so small that they cannot be detected by modern diagnostic methods. The healthcare system must therefore, when treatment begins, rely on mathematical models to calculate the growth of a tumour.

The standard method for describing tumour growth uses a parameter known as "doubling time" (DT), which specifies the time it takes for a tumour to double in volume. Scientists at the University of Gothenburg have now shown that this widely applied calculation method is erroneous.

Scientist Esmaeil Mehrara and his colleagues at the Department of Radiation Physics, University of Gothenburg, have developed a new method that calculates the rate of tumour growth more accurately. The new method uses a parameter known as the specific growth rate (SGR), which measures the percentage growth of the tumour per day.

The new method improves the possibility of determining the effects of various treatment alternatives. "The standard method used to determine the effect of therapy does not take the rate of tumour growth into account, while our new model does. This means that we can measure more accurately even small effects of treatment", says Esmaeil Mehrara.

It is hoped that the new method using SGR will be valuable in determining whether a treatment is having an effect or not in a particular patient. This means that the best treatment for a patient can be found more rapidly than is the case today.

Contact:
Esmaeil Mehrara, PhD, Department of Radiation Physics, University of Gothenburg
Mobile: +46 762 447415
Tel: +46 31 342 4023
e.mehrara@radfys.gu.se
e.mehrara@gmail.com

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/dspace/handle/2077/21548

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>