Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice cream sensations on the computer

05.06.2014

Changes in coldness, creaminess or texture that we experience in the mouth while we are eating an ice cream can be visualised on a screen using coloured curves. Graphs help manufacturers improve product quality, as proven by researchers at the Institute of Agrochemistry and Food Technology in Valencia, Spain.

In the last five years a technique known as 'Temporal Dominance of Sensations' (TDS) has become popular, used to analyse how consumer impressions evolve from the moment they taste a product.


This shows TDS curves for two types of ice cream, the first containing only sweetened milk (M) and the second milk, cream, egg and hydrocolloids (MCEH).

Credit: IATA

Researchers at the Institute of Agrochemistry and Food Technology (CSIC) have now used the technique to visualise the 'perceptions' experienced when eating an ice cream, which come together as a smooth and creamy liquid is formed when it melts in the mouth.

"As well as how it looks before being served, the texture on our tongue and palate is key to it being accepted and considered as a quality product," said Susana Fiszman, one of the authors, to SINC. To assess this aspect, scientists have organised a tasting session with 85 persons, who described the sensations they felt while eating a vanilla ice cream.

The participants pointed out on a screen the most dominant characteristic present in each moment, from the cold they felt when first touching the mouth (cold-ice) or once on the tongue to its creaminess, lack of smoothness, gumminess and mouth coating, i.e., how much of the product remained in the mouth after swallowing.

The results, published in the 'Food Hydrocolloids' journal, are processed with a software and are shown in graphs displaying coloured lines, one for each characteristic.

In this way, an analysis can be made as to what happens when the researchers 'play' with the basic ingredients of the ice cream: cream, egg yolk, sugar, milk and thickening agents like gums or hydrocolloids, macromolecules that give the product thickness and stability.

"In an ice cream made only with milk and sugar, the curves that dominate are those representing coldness and lack of smoothness. But adding cream, egg and hydrocolloids significantly increases and prolongs creaminess and mouth coating," Fiszman explains.

She points out the role of hydrocolloids: "Normally the perception of a cold-ice sensation is negative for the consumer, but we have seen that this is eliminated or delayed when these macromolecules are added. The macromolecules also enhance and prolong the creaminess, which is associated with a high quality ice cream".

According to the authors of the study, knowledge of these details and the dynamics of sensory perception of a product will help manufacturers to better quantify the ideal proportions of the ingredients and, in general, to improve the product.

###

Paula Varela, Aurora Pintor, Susana Fiszman. "How hydrocolloids affect the temporal oral perception of ice cream". Food Hydrocolloids 36: 220, mayo de 2014.

SINC | Eurek Alert!

Further reports about: Hydrocolloids characteristic coating macromolecules milk mouth oral palate smoothness sugar technique

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>