Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ice cream sensations on the computer

05.06.2014

Changes in coldness, creaminess or texture that we experience in the mouth while we are eating an ice cream can be visualised on a screen using coloured curves. Graphs help manufacturers improve product quality, as proven by researchers at the Institute of Agrochemistry and Food Technology in Valencia, Spain.

In the last five years a technique known as 'Temporal Dominance of Sensations' (TDS) has become popular, used to analyse how consumer impressions evolve from the moment they taste a product.


This shows TDS curves for two types of ice cream, the first containing only sweetened milk (M) and the second milk, cream, egg and hydrocolloids (MCEH).

Credit: IATA

Researchers at the Institute of Agrochemistry and Food Technology (CSIC) have now used the technique to visualise the 'perceptions' experienced when eating an ice cream, which come together as a smooth and creamy liquid is formed when it melts in the mouth.

"As well as how it looks before being served, the texture on our tongue and palate is key to it being accepted and considered as a quality product," said Susana Fiszman, one of the authors, to SINC. To assess this aspect, scientists have organised a tasting session with 85 persons, who described the sensations they felt while eating a vanilla ice cream.

The participants pointed out on a screen the most dominant characteristic present in each moment, from the cold they felt when first touching the mouth (cold-ice) or once on the tongue to its creaminess, lack of smoothness, gumminess and mouth coating, i.e., how much of the product remained in the mouth after swallowing.

The results, published in the 'Food Hydrocolloids' journal, are processed with a software and are shown in graphs displaying coloured lines, one for each characteristic.

In this way, an analysis can be made as to what happens when the researchers 'play' with the basic ingredients of the ice cream: cream, egg yolk, sugar, milk and thickening agents like gums or hydrocolloids, macromolecules that give the product thickness and stability.

"In an ice cream made only with milk and sugar, the curves that dominate are those representing coldness and lack of smoothness. But adding cream, egg and hydrocolloids significantly increases and prolongs creaminess and mouth coating," Fiszman explains.

She points out the role of hydrocolloids: "Normally the perception of a cold-ice sensation is negative for the consumer, but we have seen that this is eliminated or delayed when these macromolecules are added. The macromolecules also enhance and prolong the creaminess, which is associated with a high quality ice cream".

According to the authors of the study, knowledge of these details and the dynamics of sensory perception of a product will help manufacturers to better quantify the ideal proportions of the ingredients and, in general, to improve the product.

###

Paula Varela, Aurora Pintor, Susana Fiszman. "How hydrocolloids affect the temporal oral perception of ice cream". Food Hydrocolloids 36: 220, mayo de 2014.

SINC | Eurek Alert!

Further reports about: Hydrocolloids characteristic coating macromolecules milk mouth oral palate smoothness sugar technique

More articles from Life Sciences:

nachricht Inactivate vaccines faster and more effectively using electron beams
23.03.2017 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Vanishing capillaries

23.03.2017 | Health and Medicine

Nanomagnetism in X-ray Light

23.03.2017 | Physics and Astronomy

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>