Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hunt for the Killer Bug

24.01.2014
Identification of living Legionella using specific metabolic lipopolysaccharides

The bacterium that causes Legionnaires’ disease remains difficult to track. French researchers have now developed a new technique that should allow living representatives of this dangerous pathogen to be detected much more quickly than with conventional methods.



As they report in the journal Angewandte Chemie, samples are exposed to an azide-modified compound that the pathogen specifically incorporates into its shell, which is made of saccharide units. A fluorescent marker attached to the azide groups is used to identify the pathogen.

In the summer of 1976, a previously unknown disease broke out at a convention of the American Legion in Philadelphia. Of the 221 people infected, 34 died. The disease now known as Legionnaires’ disease has broken out many times since then.

The pathogen behind it was identified as a bacterium called Legionella pneumophila that proliferates in systems of standing water at temperatures between 25 and 50 °C, such as water reservoirs, boilers, fountains, whirlpool tubs, or intermittently used water pipes. Although drinking the contaminated water poses no risk, inhaling droplets leads to severe lung infections.

In order to avoid epidemics, it is necessary to monitor vulnerable systems. However, traditional testing methods based on bacterial cultures require 10 days to identify the pathogen – far too late to intervene in suspected cases.

Sam Dukan, Boris Vauzeilles, and their team at the Institute for the Chemistry of Natural Substances (CNRS, Gif-sur-Yvette), the Institut de Chimie Moléculaire et des Matériaux d’Orsay (CNRS/Université Paris-Sud) and the Institut de Microbiologie de la Méditérranée (CNRS/Aix-Marseille University) have now developed a new method that can be used to identify living bacteria of the species Legionella pneumophila within just one day.

Legionella are Gram-negative bacteria with a species-specific pattern of saccharide molecules on their surface, called the lipopolysaccharides. In Legionella pneumophila, these contain a special saccharide building block that other bacteria do not have. For their new test, the researchers exposed the sample to a precursor molecule of this saccharide with an additional azide group (–N3) tacked on. If the bacteria in question are present, they take up this substance and use it to build the saccharide building block to use in their lipopolysaccharides—which are now tagged with azide groups.

These groups can then be used to attach various probes to the surface of the cell. For example with a fluorescent label, the marked bacteria give off a green glow under a microscope. Because only Legionella pneumophila synthesizes the special saccharide building blocks, other species of Legionella are not marked in this process. This new method is the first successful metabolic lipopolysaccharide label using a specific saccharide that can selectively detect one species.

About the Author
Dr. Boris Vauzeilles is a French CNRS researcher with a dual appointment at the Institut de Chimie des Substances Naturelles in Gif-sur-Yvette and the Institut de Chimie Moléculaire in Orsay. His research interests are mainly focused on the design and synthesis of new tools for chemical biology, with a major expertise in glycochemistry. His work is done in close collaboration with biologists such as Dr. Sam Dukan.
Author: Boris Vauzeilles, Institut de Chimie des Substances Naturelles du CNRS, Gif-sur-Yvette (France), mailto:boris.vauzeilles@cnrs.fr
Title: Identification of Living Legionella pneumophila Using Species-Specific Metabolic Lipopolysaccharide Labeling

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201309072

Boris Vauzeilles | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>