Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Honey-Bee Agression Study Suggests Nurture Alters Nature

18.08.2009
A new study reveals that changes in gene expression in the brain of the honey bee in response to an immediate threat have much in common with more long-term and even evolutionary differences in honey-bee aggression. The findings lend support to the idea that nurture (an organism’s environment) may ultimately influence nature (its genetic inheritance).

The study, appearing this week in the Proceedings of the National Academy of Sciences, used microarray analysis to measure changes in gene expression in the brains of European honey bees and much more aggressive Africanized honey bees.

Microarrays offer a snapshot of the thousands of genes that are activated at a given point in time. By comparing microarrays of bees in different environmental and social conditions, the researchers were able to look for patterns of gene expression that coincided with aggression.

Honey bees respond aggressively only if their hive is disturbed. But when disturbed they mount a vigorous defense – the all too familiar bee sting. The researchers observed that changes that occur in the brain of a European honey bee after it is exposed to alarm pheromone (a chemical signal that the hive is in danger) look a lot like the more gradual changes that occur over the bee’s lifetime. (Old bees are more aggressive than young bees.)

Even more striking was the finding of a very similar pattern of brain gene expression in Africanized honey bees. In terms of brain gene expression, Africanized bees “look” like they were just exposed to a whiff of alarm pheromone, even though they weren’t.

“Microarray analysis is revealing large-scale gene expression patterns that are giving us new insights into the relationships between genes and social behavior,” said Gene Robinson, a professor of neuroscience and of entomology at the University of Illinois, who led the study. “Some of the same genes associated with aggression that vary due to heredity also vary due to environment. This shows how nature and nurture both act on the genome, which provides an alternative to the old ‘nature versus nurture’ dichotomy.”

The new findings may begin to explain how the evolutionary diversity of behavioral traits is achieved, he said.

“We suggest that the molecular processes underlying environmental effects on aggression – that is, responsiveness to alarm pheromone – could have evolved into molecular processes underlying inherited differences in aggression exhibited by Africanized honey bees and European honey bees – nurture begets nature,” the authors wrote.

The study was made possible by a National Science Foundation Frontiers in Biological Research grant, led by University of Illinois medical information science professor and department head Bruce Schatz, who is also an affiliate of the Institute for Genomic Biology.

“The study is one of the most exciting to emerge yet from ‘BeeSpace,’ an NSF-sponsored project which is the first of its kind to use genomics and new bioinformatics on a massive scale to understand how nature and nurture influence behavior,” Schatz said.

Additional funding was provided by the Fyssen Foundation, the National Institutes of Health, the Illinois Sociogenomics Initiative and the U.S. Department of Agriculture.

The research team also included scientists from Purdue University; the University of Guelph; CENIDFA-INIFAP, in Ajuchitlán, Mexico; the Carl Hayden Bee Research Center of the USDA Agriculture Research Service; and the University of Illinois departments of animal sciences, cell and developmental biology, chemistry, and computer science.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>