Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Green chemistry: The sweet conversion of a by-product

The waste plant materials remaining from palm oil extraction processes can now be converted into a useful sugar

Palm oil extraction annually produces approximately 13 million tons of waste plant matter. Some of this by-product, known as empty fruit bunch (EFB), is currently incinerated to produce heat and electricity to run palm oil mills, but it is now on the path to a sweeter use.

By adapting and optimizing an established technique to convert sugarcane bagasse and corn stover to the useful sugar xylose, a research team in Singapore, led by Jin Chuan Wu from the A*STAR Institute of Chemical and Engineering Sciences, has experimentally extracted high yields of xylose from EFB1.

EFB contains xylan, which is a carbohydrate made up of units of xylose. Xylan is very susceptible to being broken down to these individual sugar molecules in the presence of mild acid. Known as hydrolysis, this process is not widely applied to EFB — despite its well-established use for converting sugarcane bagasse and corn stover — because of difficulties in making it cost effective. The key to Wu and his team’s success was the combination of acids they selected for hydrolyzing EFB: sulfuric (H2SO4) and phosphoric acid (H3PO4). “The combined use of H2SO4 and H3PO4 has a synergistic effect in improving sugar yields,” explains Wu.

Since the elements sulfur and phosphorus are essential for the fermentation of xylose using microbes, the researchers’ combination of acids will play a fundamental role in the further conversion of xylose into other useful chemicals, such as the sugar substitute xylitol, lactic acid and ethanol. After hydrolysis and neutralization, these acid components can be used directly in a microbial fermentation. Hydrolysis requires the levels of these elements to be low, with higher levels being detrimental. In previous EFB hydrolysis techniques, higher concentrations of acids were used, but the levels of sulfur and phosphorous were too high for the microbial fermentation stage.

After discerning the right combination of mild acids, Wu and his team used computer modeling followed by supporting experiments to find the optimal conditions for hydrolysis. They obtained xylose yields of 80–90%. The conditions they optimized included the concentrations of the two acids, the reaction temperature, the dilution of the solution and the size of the EFB particles.

"Next, we will convert the sugars into lactic acids by microbial fermentation using lactic acid bacteria,” explains Wu. This lactic acid will be used for producing polylactic acid: a renewable and completely biodegradable biopolymer, that he says is stable at high temperatures and has broad applications.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information

Zhang, D., Ong, Y. L., Li, Z. & Wu, J. C. Optimization of dilute acid-catalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chemical Engineering Journal 181–182, 636–642 (2012)

A*STAR Research | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Signaling Pathways to the Nucleus
19.03.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht In monogamous species, a compatible partner is more important than an ornamented one
19.03.2018 | Max-Planck-Institut für Ornithologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

A new kind of quantum bits in two dimensions

19.03.2018 | Physics and Astronomy

Scientists have a new way to gauge the growth of nanowires

19.03.2018 | Materials Sciences

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Science & Research
Overview of more VideoLinks >>>