Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics of Patterning the Cerebral Cortex: How Stem Cells Yield Functional Regions in “Gray Matter”

14.10.2009
The cerebral cortex, the largest and most complex component of the brain, is unique to mammals and alone has evolved human specializations. Although at first all stem cells in charge of building the cerebral cortex—the outermost layer of neurons commonly referred to as gray matter—are created equal, soon they irrevocably commit to forming specific cortical regions. But how the stem cells’ destiny is determined has remained an open question.

In the Oct. 11 advance online edition of Nature Neuroscience, scientists at the Salk Institute for Biological Studies report that they have identified the first genetic mechanism that determines the regional identity of progenitors tasked with generating the cerebral cortex. Their discovery reveals a critical period during which a LIM homeodomain transcription factor known as Lhx2 decides over the progenitors’ regional destiny: Once the window of opportunity closes, their fate is sealed.

“These findings provide a foundation for understanding the important process of developing the distinct regions of the cerebral cortex and determining their unique properties,” says Dennis O’Leary, Ph.D., a professor in the Molecular Neurobiology Laboratory, who led the study.

This knowledge will also potentially help in understanding the genetic underpinnings of many neurodegenerative disorders, and provide the means to uniquely specify stem cells to repair specific parts of the brain ravaged by disease or injury.

During embryonic brain development, the stem cells that will give rise to the cerebral cortex pass through a series of tightly regulated stages: from omnipotent stem cells to cortical progenitor cells that will eventually form functionally specialized regions, such as the six-layered neocortex, the biggest and evolutionarily most recent part of the cerebral cortex, and the older three-layered olfactory cortex among others.

Early during neurogenesis, stem cell-like progenitor cells known as neuroepithelial cells undergo symmetric cell division to expand the pool of neuroepithelial cells. Later, they differentiate into more mature progenitor cells referred to as radial glia, which divide asymmetrically to produce a constant stream of both progenitors and neurons, the latter migrating outward to establish the gray matter of specialized cortical regions.

In a study published earlier this year, O’Leary and Setsuko Sahara, Ph.D., a senior research associate in the O’Leary lab, uncovered that the growth factor Fgf10 controls the timing of the critical transition period that bridges the early expansion phase of neuroepithelial cells and the later neurogenic phase of radial glia. Now, the Salk researchers wanted to know when and how these cells acquire their future regional identity.

The predominant model for determining genetic mechanisms that specify the production of distinct types of neurons has been the spinal cord. “In the spinal cord distinct subpopulations of progenitors that generate different classes of neurons are defined by unique sets of transcriptions factors, and are separated by sharp spatial borders,” explains O’Leary. “But in the cerebral cortex the situation is very different. There are no genes that we or anybody else have identified that define separate subpopulations of progenitors that generate neurons that form the different regions of the cerebral cortex. Thus a different mechanism must operate.”

The defining characteristic of progenitor cells that will go on to form the cerebral cortex is the expression of Emx1, a homeodomain transcription factor. O’Leary proposed that the regional identity of progenitors in the Emx1 lineage may involve a graded expression of one or more transcription factors that define unique subpopulations of progenitors via differences in their expression levels. The most promising candidate was Lhx2, which is expressed in all progenitors of the Emx1 lineage but at different levels in a graded pattern. Testing this hypothesis required that Shen-ju Chou, Ph.D., a senior research associate in the O’Leary lab and first-author of this study, develop a novel genetically-engineered mouse to delete Lhx2 in a conditional fashion.

Shen-ju and two other members of O’Leary’s research team, Carlos G. Perez Garcia, Ph.D. and Todd T. Kroll, Ph.D., then used this mouse line to delete Lhx2 at different times during embryonic development to assess whether Lhx2 had any say over the progenitors’ fate in producing regions of the cerebral cortex.

When the researchers deleted Lhx2 from neuroepithelial cells before they made the transition into radial glia, the neocortex was transformed into a large, out-of-place olfactory cortex. But when they deleted Lhx2 just one day later the transformation did not occur, indicating that the progenitors’ regional identity was fixed.

“These experiments show that Lhx2 regulates the regional fate decision of progenitors of the Emx1 lineage to generate neocortex or olfactory cortex” says Chou. “Lhx2 needs to be present in appropriate quantities during a critical window of time for progenitors to make the appropriate fate decision. Adds O’Leary, “This finding dovetails nicely with our previous study on Fgf10 by demonstrating that the critical time window for the regional fate decision determined by Lhx2 closes once neuroepithelial cells have made the transition to radial glia, a step regulated by Fgf10.”

O’Leary’s team plans to extend this work to determine the mechanism of action of Lhx2, and whether modulating Lhx2 levels can direct, or restrict, the differentiation of embryonic stem (ES) cells, or induced pluripotent stem (iPS) cells. This work will be important for developing strategies for brain repair.

This work was supported by grants from the National Institutes of Health.

About the Salk Institute for Biological Studies

The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes, and cardiovascular disorders by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>