Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic mutations that cause common childhood brain tumors identified

23.07.2012
Researchers at the Stanford University School of Medicine and Lucile Packard Children's Hospital have identified several gene mutations responsible for the most common childhood brain tumor, called medulloblastoma, adding evidence to the theory that the diagnosis is a group of genetically distinct cancers with different prognoses. These and accompanying findings are likely to lead to less-toxic, better-targeted treatment approaches over the next two years, the researchers said.

"We tend to treat all medulloblastomas as one disease without taking into account how heterogeneous the tumors are at the molecular level," said Yoon-Jae Cho, MD, an assistant professor of neurology and neurological sciences at Stanford, a pediatric neurologist at Packard Children's and the senior author of the new research. "This paper represents a finer-grained view of the genetic landscape of these tumors and provides us with some leads on how to develop new therapies."

The research, which will appear online in Nature July 22, is part of a large, ongoing effort to characterize genetic errors in medulloblastoma. Two companion studies on which Cho is a co-author will be published simultaneously with his paper. The three papers came from a consortium that involves scientists at Stanford, Packard Children's, the Broad Institute, Children's Hospital Boston, the Dana-Farber Cancer Institute, the German Cancer Research Center, Brandeis University and the Hospital for Sick Children in Toronto.

Current treatment for medulloblastoma, which originates in the cerebellum and affects about 250 U.S. children each year, begins with surgery to remove as much of the tumor as possible. Patients then receive a combination of radiation and chemotherapy, but the treatments are not tailored to the tumor's genetic characteristics.

Cho's team extracted DNA from 92 medulloblastoma tumors and compared it with DNA from matched blood samples from the same patients, uncovering 12 significant "point mutations" — single-letter errors in the genetic code — that occurred frequently in the brain cancer. A handful of the mutations had been previously identified in smaller studies of medulloblastoma, but several mutations were novel in both medulloblastoma and in cancer.

Among the newly identified mutations was one in an RNA helicase gene, DDX3X, which Cho said is the second-most common mutation in medulloblastoma tumors. "Mutations in this gene have now also been identified in other tumor types, such as chronic lymphocytic leukemia, and head and neck tumors," he said.

However, the researchers found that it was rare for the same gene mutated in several different patients' tumors. More commonly, mutations involving a set of genes regulating a single biological pathway were found in the tumors — a pattern that is emerging across cancer genome sequencing efforts.

Though no single tumor in the study carried all 12 mutations, the researchers were able to categorize the tumors according to which mutations they possessed. "We now understand that there are certain tumors with particular genetic signatures that are really resistant to standard treatments," Cho said. Children with medulloblastoma do not routinely have their tumors' genetic signatures characterized, but Cho believes that such characterization coupled with targeted therapies could greatly enhance tumor treatment.

About two-thirds of medulloblastoma patients now survive five years past diagnosis, but many survivors suffer lasting physical or intellectual side effects from their cancer treatments. Drugs tailored to a tumor's genetic profile have the potential to save more patients while reducing side effects, Cho said.

Several of the mutations discovered affect cellular signals that switch large groups of genes on and off. "The dysregulation of these 'epigenetic programs' is becoming a common theme not only in medulloblastoma but across cancer," Cho said. Such pathways may be good targets for cancer drugs; indeed, drugs targeting one such pathway (histone methyltransferases) are currently in pre-clinical development, while agents against another pathway (Hedgehog signaling pathway) are entering phase-2 clinical trials for medulloblastoma.

Cho is the co-chair of a committee within the Pediatric Brain Tumor Consortium that guides which drugs should be moved into clinical trials next. "Our plan is that within the next one to two years we will be able to offer kids a new set of compounds that have a clear biological rationale based on our genomic studies." Cho said. "We want to make sure we're being careful of what we move forward with, but at the same time, for some of these kids we don't have many, if any, effective and durable treatment options."

Cho's collaborators at Stanford included research associate Furong Yu; Gerald Crabtree, PhD, professor of pathology and of developmental biology and a member of the Stanford Cancer Institute; and life science research assistant Amanda Kautzman.

The research was funded by the National Institutes of Health, a St. Baldrick's Foundation Career Development Award, the Beirne Faculty Scholar endowment at Stanford University, German Cancer Aid, the BMBF ICGC-PedBrain project, the Howard Hughes Medical Institute, the Pediatric Brain Tumor Foundation, the Canadian Institutes of Health Research, the Hospital for Sick Children and the Mullarkey Research Fund. Cho consults for Novartis to help develop biomarkers for the company's clinical trial design.

Information about Stanford's Department of Neurology and Neurological Sciences, which also supported this research, is available at http://neurology.stanford.edu/.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Lucile Packard Children's Hospital at Stanford is an internationally recognized 311-bed hospital, research center and leading regional medical network providing the full complement of services for the health of children and expectant mothers. In partnership with the Stanford University School of Medicine, our world-class doctors and nurses deliver innovative, family-centered care in every pediatric and obstetric specialty, tailored to every patient. Packard Children's is annually ranked as one of the nation's best pediatric hospitals by U.S. News & World Report and is the only Northern California children's hospital with specialty programs ranked in the U.S. News Top 10. Learn more about us at www.lpch.org and about our continuing growth at growing.lpch.org. Friend us on Facebook, watch us on YouTube and follow us on Twitter.

PRINT MEDIA CONTACT: Erin Digitale at (650) 724-9175 (digitale@stanford.edu)
BROADCAST MEDIA CONTACT: Robert Dicks at (650) 497-8364 (rdicks@lpch.org)

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>