Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic mutations that cause common childhood brain tumors identified

23.07.2012
Researchers at the Stanford University School of Medicine and Lucile Packard Children's Hospital have identified several gene mutations responsible for the most common childhood brain tumor, called medulloblastoma, adding evidence to the theory that the diagnosis is a group of genetically distinct cancers with different prognoses. These and accompanying findings are likely to lead to less-toxic, better-targeted treatment approaches over the next two years, the researchers said.

"We tend to treat all medulloblastomas as one disease without taking into account how heterogeneous the tumors are at the molecular level," said Yoon-Jae Cho, MD, an assistant professor of neurology and neurological sciences at Stanford, a pediatric neurologist at Packard Children's and the senior author of the new research. "This paper represents a finer-grained view of the genetic landscape of these tumors and provides us with some leads on how to develop new therapies."

The research, which will appear online in Nature July 22, is part of a large, ongoing effort to characterize genetic errors in medulloblastoma. Two companion studies on which Cho is a co-author will be published simultaneously with his paper. The three papers came from a consortium that involves scientists at Stanford, Packard Children's, the Broad Institute, Children's Hospital Boston, the Dana-Farber Cancer Institute, the German Cancer Research Center, Brandeis University and the Hospital for Sick Children in Toronto.

Current treatment for medulloblastoma, which originates in the cerebellum and affects about 250 U.S. children each year, begins with surgery to remove as much of the tumor as possible. Patients then receive a combination of radiation and chemotherapy, but the treatments are not tailored to the tumor's genetic characteristics.

Cho's team extracted DNA from 92 medulloblastoma tumors and compared it with DNA from matched blood samples from the same patients, uncovering 12 significant "point mutations" — single-letter errors in the genetic code — that occurred frequently in the brain cancer. A handful of the mutations had been previously identified in smaller studies of medulloblastoma, but several mutations were novel in both medulloblastoma and in cancer.

Among the newly identified mutations was one in an RNA helicase gene, DDX3X, which Cho said is the second-most common mutation in medulloblastoma tumors. "Mutations in this gene have now also been identified in other tumor types, such as chronic lymphocytic leukemia, and head and neck tumors," he said.

However, the researchers found that it was rare for the same gene mutated in several different patients' tumors. More commonly, mutations involving a set of genes regulating a single biological pathway were found in the tumors — a pattern that is emerging across cancer genome sequencing efforts.

Though no single tumor in the study carried all 12 mutations, the researchers were able to categorize the tumors according to which mutations they possessed. "We now understand that there are certain tumors with particular genetic signatures that are really resistant to standard treatments," Cho said. Children with medulloblastoma do not routinely have their tumors' genetic signatures characterized, but Cho believes that such characterization coupled with targeted therapies could greatly enhance tumor treatment.

About two-thirds of medulloblastoma patients now survive five years past diagnosis, but many survivors suffer lasting physical or intellectual side effects from their cancer treatments. Drugs tailored to a tumor's genetic profile have the potential to save more patients while reducing side effects, Cho said.

Several of the mutations discovered affect cellular signals that switch large groups of genes on and off. "The dysregulation of these 'epigenetic programs' is becoming a common theme not only in medulloblastoma but across cancer," Cho said. Such pathways may be good targets for cancer drugs; indeed, drugs targeting one such pathway (histone methyltransferases) are currently in pre-clinical development, while agents against another pathway (Hedgehog signaling pathway) are entering phase-2 clinical trials for medulloblastoma.

Cho is the co-chair of a committee within the Pediatric Brain Tumor Consortium that guides which drugs should be moved into clinical trials next. "Our plan is that within the next one to two years we will be able to offer kids a new set of compounds that have a clear biological rationale based on our genomic studies." Cho said. "We want to make sure we're being careful of what we move forward with, but at the same time, for some of these kids we don't have many, if any, effective and durable treatment options."

Cho's collaborators at Stanford included research associate Furong Yu; Gerald Crabtree, PhD, professor of pathology and of developmental biology and a member of the Stanford Cancer Institute; and life science research assistant Amanda Kautzman.

The research was funded by the National Institutes of Health, a St. Baldrick's Foundation Career Development Award, the Beirne Faculty Scholar endowment at Stanford University, German Cancer Aid, the BMBF ICGC-PedBrain project, the Howard Hughes Medical Institute, the Pediatric Brain Tumor Foundation, the Canadian Institutes of Health Research, the Hospital for Sick Children and the Mullarkey Research Fund. Cho consults for Novartis to help develop biomarkers for the company's clinical trial design.

Information about Stanford's Department of Neurology and Neurological Sciences, which also supported this research, is available at http://neurology.stanford.edu/.

The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://mednews.stanford.edu. The medical school is part of Stanford Medicine, which includes Stanford Hospital & Clinics and Lucile Packard Children's Hospital. For information about all three, please visit http://stanfordmedicine.org/about/news.html.

Lucile Packard Children's Hospital at Stanford is an internationally recognized 311-bed hospital, research center and leading regional medical network providing the full complement of services for the health of children and expectant mothers. In partnership with the Stanford University School of Medicine, our world-class doctors and nurses deliver innovative, family-centered care in every pediatric and obstetric specialty, tailored to every patient. Packard Children's is annually ranked as one of the nation's best pediatric hospitals by U.S. News & World Report and is the only Northern California children's hospital with specialty programs ranked in the U.S. News Top 10. Learn more about us at www.lpch.org and about our continuing growth at growing.lpch.org. Friend us on Facebook, watch us on YouTube and follow us on Twitter.

PRINT MEDIA CONTACT: Erin Digitale at (650) 724-9175 (digitale@stanford.edu)
BROADCAST MEDIA CONTACT: Robert Dicks at (650) 497-8364 (rdicks@lpch.org)

Erin Digitale | EurekAlert!
Further information:
http://www.stanford.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>