Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic Mutation Linked to Parkinson's Disease

18.07.2011
Researchers say mutated gene may play a role in the buildup of proteins in the brain

Researchers have discovered a new gene mutation they say causes Parkinson's disease. The mutation was identified in a large Swiss family with Parkinson's disease, using advanced DNA sequencing technology.

The study, published today in the American Journal of Human Genetics, was led by neuroscientists at the Mayo Clinic campus in Florida and included collaborators from the U.S., Canada, Europe, United Kingdom, Asia and the Middle East.

"This finding provides an exciting new direction for Parkinson's disease research," says co-author Zbigniew Wszolek, M.D., a Mayo Clinic neuroscientist. "Every new gene we discover for Parkinson's disease opens up new ways to understand this complex disease, as well as potential ways of clinically managing it."

The team found that mutations in VPS35, a protein responsible for recycling other proteins within cells, caused Parkinson's disease in the Swiss family. Mutated VPS35 may impair the ability of a cell to recycle proteins as needed, which could lead to the kind of errant buildup of protein seen in some Parkinson's disease brains and in other diseases like Alzheimer's disease says co-author Owen Ross, Ph.D., a neuroscientist at Mayo Clinic in Florida. "In fact, expression of this gene has been shown to be reduced in Alzheimer's disease, and faulty recycling of proteins within cells has been linked to other neurodegenerative diseases," he says.

So far, mutations in six genes have been linked to familial forms of Parkinson's disease, with many mutations identified as a direct result of Mayo Clinic's collaborative research efforts. Dr. Wszolek has built a worldwide network of Parkinson's disease investigators, many of whom have conducted research at Mayo Clinic. The study's first author, Carles Vilariño-Güell, Ph.D., and the senior investigator, Matthew Farrer, Ph.D., worked on this study while at Mayo Clinic in 2010; they have since moved to the University of British Columbia in Vancouver. The joint first author, neurologist Christian Wilder, M.D., first identified the Swiss Parkinson's disease family and continued to study them while he was a research fellow at Mayo Clinic; he has now returned to Centre Hospitalier Universitaire Vaudois in Lausanne, Switzerland.

Investigators used a new genetic sequencing technique to find the VPS35 mutation, according to Dr. Ross. They used 'exome' sequencing to look for shared variations in a pair of first cousins within a large Swiss family affected by Parkinson's disease. Collectively, exons, which provide the genetic blueprint used in the production of proteins, make up only 1 percent of the entire genome and so it is much easier to look for novel variations, causing changes in the protein sequence, that would represent possible disease-causing mutations, he says. "Cousins only share about 10 percent of their genome, whereas parents and children or siblings share much more. This narrowed the field of novel variations for us," says Dr. Wszolek, with VPS35 emerging as the latest Parkinson's disease gene.

"There is much more we need to know about this gene," Dr. Ross says. "Although it appears to be a rare cause of Parkinson's disease, it seems to be very important from a mechanistic viewpoint for this disease and possibly other neurodegenerative disorders."

The study was funded by grants from the National Institutes of Health, the Swiss Parkinson's Disease Foundation, the Michael J. Fox Foundation, a gift from Carl Edward Bolch, Jr., and Susan Bass Bolch. The sequencing work was financed by the Parkinson's Disease Foundation. This work and Dr. Vilariño-Güell received the AD/Parkinson's Disease Conference Award donated by Ms. Evelyn Greenberg in memory of Prof. Moshe Greenberg.

About Mayo Clinic
Mayo Clinic is a nonprofit worldwide leader in medical care, research and education for people from all walks of life. For more information, visit MayoClinic.com or MayoClinic.org/news.

Kevin Punsky | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>