Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetic differences between yeasts of the same species are greater than those between humans and chimpanzees

13.02.2009
There may be greater genetic variation between different yeasts of the same species than between humans and chimpanzees.

This is one of the findings of a study from the University of Gothenburg that is being published in the scientific journal Nature. This study heralds a new era in evolutionary genetics research - the mapping of an individual's DNA.

The mapping of the entire yeast genome in 1996 marked the beginning of a revolution in biological and medical research. The human genome was mapped in 2001, and by now the number of characterised species is approaching 1000, most of which are bacteria. The next advance is only a few years away - mapping the genetic evolution of individual multicellular animals, including humans.

"We shall then be able to identify the genetic causes of human disease and to understand how the process of evolution works when species are being formed," says Anders Blomberg, professor at the Department of Cell and Molecular Biology, University of Gothenburg.

Anders Blomberg and his colleague Jonas Warringer are publishing a paper in the highly respected scientific journal Nature, that to some extent leads into a new era in evolutionary and functional genetics research. The lowly yeast is, once again, leading the way.

In collaboration with the Sanger Institute in Cambridge, and the University of Nottingham, the Gothenburg researchers have succeeded in sequencing the DNA and characterising the genome properties (i.e. phenotypes) of 70 different individual organisms from two different species of yeast - the common brewer's yeast Saccharomyces cerevisiae and its evolutionary cousin Saccharomyces paradoxus. The paper presents several interesting conclusions, e.g. that human alcohol consumption has altered yeast DNA.

"As humans transported wine and beer yeasts around the world, different yeasts have mated and recombined, so that the strains of today carry gene variants from various parts of the world. This mosaic pattern is not at all visible in our studies of another yeast that has not been exploited by humans," says Anders Blomberg.

The study also shows that there can be greater genetic differences between individuals within a particular species of yeast than there are between humans and chimpanzees. The DNA of individual yeast organisms can vary by up to 4 per cent, compared to the 1 per cent difference between the DNA of humans and chimpanzees.

Another interesting observation is that individual organisms from the same species can have extra genetic material. Most of these "extra genes" occur at the periphery of the chromosome (the telomer region), which lends support to the theory that these areas are very important in evolution.

Krister Svahn | idw
Further information:
http://www.science.gu.se
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature07743.html

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>