Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The genetic differences between yeasts of the same species are greater than those between humans and chimpanzees

13.02.2009
There may be greater genetic variation between different yeasts of the same species than between humans and chimpanzees.

This is one of the findings of a study from the University of Gothenburg that is being published in the scientific journal Nature. This study heralds a new era in evolutionary genetics research - the mapping of an individual's DNA.

The mapping of the entire yeast genome in 1996 marked the beginning of a revolution in biological and medical research. The human genome was mapped in 2001, and by now the number of characterised species is approaching 1000, most of which are bacteria. The next advance is only a few years away - mapping the genetic evolution of individual multicellular animals, including humans.

"We shall then be able to identify the genetic causes of human disease and to understand how the process of evolution works when species are being formed," says Anders Blomberg, professor at the Department of Cell and Molecular Biology, University of Gothenburg.

Anders Blomberg and his colleague Jonas Warringer are publishing a paper in the highly respected scientific journal Nature, that to some extent leads into a new era in evolutionary and functional genetics research. The lowly yeast is, once again, leading the way.

In collaboration with the Sanger Institute in Cambridge, and the University of Nottingham, the Gothenburg researchers have succeeded in sequencing the DNA and characterising the genome properties (i.e. phenotypes) of 70 different individual organisms from two different species of yeast - the common brewer's yeast Saccharomyces cerevisiae and its evolutionary cousin Saccharomyces paradoxus. The paper presents several interesting conclusions, e.g. that human alcohol consumption has altered yeast DNA.

"As humans transported wine and beer yeasts around the world, different yeasts have mated and recombined, so that the strains of today carry gene variants from various parts of the world. This mosaic pattern is not at all visible in our studies of another yeast that has not been exploited by humans," says Anders Blomberg.

The study also shows that there can be greater genetic differences between individuals within a particular species of yeast than there are between humans and chimpanzees. The DNA of individual yeast organisms can vary by up to 4 per cent, compared to the 1 per cent difference between the DNA of humans and chimpanzees.

Another interesting observation is that individual organisms from the same species can have extra genetic material. Most of these "extra genes" occur at the periphery of the chromosome (the telomer region), which lends support to the theory that these areas are very important in evolution.

Krister Svahn | idw
Further information:
http://www.science.gu.se
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature07743.html

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>