Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Gene Inheritance Patterns Influence Age of Diagnosis in BRCA Families

Women who inherit the cancer genes BRCA1 or BRCA2 from their paternal lineage may get a diagnosis a decade earlier than those women who carry the cancer genes from their mother and her ancestors, according to a new study by researchers at the North Shore-LIJ Health System's Monter Cancer Center in Lake Success, NY. The findings were reported on Thursday, Dec. 8, at the San Antonio Breast Cancer Symposium.

Iuliana Shapira, MD,director of cancer genetics, and her colleagues conducted a retrospective review of 130 breast or ovarian cancer patients with the BRCA1 or BRCA2 mutations. They chose only those patients who knew the parent of origin. In other words, they could follow along their family tree to see where the breast cancer gene originated from. Some of their families had their own genetic tests done. For others, it was a matter of following the family pedigree.

As expected, a person had a 50-50 chance of getting a mutant BRCA gene from their mother or their father’s branch that carried the mutation. It is an autosomal dominant mutation. Looking at the family maps revealed some surprising findings. Contrary to the notion that the BRCA mutations are associated more commonly with Ashkenazi Jews, the scientists found that the BRCA mutations were also in families of Irish and Jamaican descent.

“No one had ever conducted a study to look at the parent-of-origin effects,” said Dr. Shapira. “Genetic diseases may display parent-of-origin effects. In such cases, the risk depends on the specific parent or origin allele. Cancer penetrance in mutations carriers may be determined by the parent origin of BRCA mutation.”

They analyzed 1,889 consecutive (136 ovarian + 1753 breast) breast (BrCa) or ovarian cancer (OvCa) patients presenting for treatment at the Monter Cancer Center between 2007 and 2010. In 130 patients with BRCA 1 or 2 mutations the parent of origin for the mutation was known. Of the 130 patients, two had both BRCA1 and BRCA2 mutated paternally inherited disease and were excluded from this analysis. Of the breast cancer patients: 28 patients had paternal and 29 had maternal BRCA1 mutations, 24 had paternal and 21 had maternal BRCA 2 mutations. Of the ovarian cancer patients, six had paternal and 10 had maternal BRCA1 mutations; seven had paternal and three had maternal BRCA2 mutations.

In carriers of BRCA mutations, the mean age at diagnosis for ovarian cancer was 51 (range 21-70) and for breast cancer was 43 (range 24-78). But when they compared the mean age at diagnosis in the maternal versus paternal inheritance, they were surprised to find that breast cancer patients with a BRCA1 maternal inheritance, the age of diagnosis was on average around 45. By comparison, women with BRCA1 paternal inheritance were diagnosed around 38. For breast cancer BRCA2 maternal inheritance, the average age of diagnosis was 50 compared to 41 years old for those with a BRCA2 paternal inheritance.

There was no significant difference between paternal and maternal age of ovarian cancer diagnosis of BRCA1 or BRCA2 mutations.“If this observation is duplicated in larger cohorts the results will have important implications for recommendation of surgical risk reduction in BRCA mutation carriers,” said Dr. Shapira. “That would mean that doctors might think about watching and waiting in young woman with BRCA mutations inherited from her mother’s family and being more aggressive in young women who inherited the mutation from their father’s side.”

Jamie Talan | Newswise Science News
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>