Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gene controls stress hormone production in macaques

18.12.2015

Some people react more calmly in stressful situations than others. Certain genes, such as the so-called COMT gene, are thought to play a role in determining our stress response. Researchers from the Vetmeduni Vienna and the University of Vienna have now studied this gene in macaques, a genus of Old World monkeys, and for the first time have shown that a specific variant of the gene is associated with higher excretion of the stress hormone cortisol. The gene variant may also influence social rank among the animals. The results were published in the journal Hormones and Behavior.

Animals that live in groups face a variety of challenging social situations. The competition for food and mating partners as well as the establishment of the social hierarchy are potential stress factors.


Japanese macaques are exposed to stress during rank fights.

(Photo: Konstanze Meindl)

Ralf Steinborn, Head of the Genomics Unit of the VetCore Facility for Research at the Vetmeduni Vienna, and ethologist Lena Pflüger from the Department of Anthropology at the University of Vienna, studied Japanese macaques living at Affenberg Landskron in Carinthia, Austria, to investigate how their genetic make-up influences the excretion of the stress hormones and the behaviour of the animals.

“Japanese macaques live in strict hierarchy which entails a high level of aggressive interaction. This makes them ideally suited for a study on stress behaviour,” says Pflüger.

Macaques differ in their stress reaction

Pflüger, first author of the study and scientific director of the Affenberg facility, studied 26 sexually mature males during the mating season, a particularly stressful time for male animals as they must compete for females. She discovered that the amount of a metabolic product of the hormone cortisol in the animals’ faeces differed across individuals.

“The macaques appear to handle stressful situations differently. Some are more courageous than others. We were interested to see whether there were genetic causes for this behaviour and how genetics affects the hormonal stress reaction and social rank,” says Pflüger.

COMT gene controls stress reaction in people

The COMT gene is one of at least 18 genes in humans that control the dopamine system in the brain. Dopamine promotes skills such as planning, decision making and problem solving. Depending on its variant, more or less of the COMT enzyme is produced from the gene, resulting in a faster or slower dopamine metabolization in the brain. Higher amounts of dopamine in the brain increase various cognitive performances but are also associated with increased stress reactions.

Steinborn and Pflüger determined the different variants of the COMT gene in Japanese macaques. This revealed that macaques with high levels of the stress hormone also possess a certain COMT variant that presumably metabolizes dopamine in the brain more slowly. The functionality of this variant and the underlying mechanism resulting in higher stress hormone levels will be determined in further studies.

“Our results indicate that animals with stress-resilient COMT variants acquire higher rank positions in the group. But a direct correlation between COMT variant and social rank has to be investigated more closely in the future,” explains Steinborn.

COMT variants make either warriors or worriers

“The dopamine level in the brain controls various behaviours in people. On the one hand, there are the so-called warrior types. In warriors, the dopamine in the brain is metabolized more quickly. Warriors possess lower cognitive skills and are less easily stressed. The second type are worriers, who score higher in cognitive performance tests but are more easily stressed. However, the dopamine system functions like an orchestra and is not dependent on just one factor,” says Steinborn.

In the future, Pflüger and Steinborn want to study other genes that play a role in the dopamine system of non-human primates. They aim to study a variety of primate species with different social styles. Another research focus will be the functionality of the newly discovered COMT gene variant at the RNA and protein levels.

Service:
The article „Allelic variation of the COMT gene in a despotic primate society: A haplotype is related to cortisol excretion in Macaca fuscata”, ba Lena S. Pflüger, Daria R. Gutleb, Martin Hofer, Martin Fieder, Bernard Wallner and Ralf Steinborn was published in the Journal Hormones and Behavior.
doi:10.1016/j.yhbeh.2015.11.012
http://www.sciencedirect.com/science/article/pii/S0018506X15301926

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna in Austria is one of the leading academic and research institutions in the field of Veterinary Sciences in Europe. About 1,300 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Affenberg Facility in Landskron, Carinthia, Austria
http://www.affenberg.com

Scientific Contact:
Prof. Ralf Steinborn
VetCore Research Facility
Veterinärmedizinische Universität Wien (Vetmeduni Vienna)
T +43 1 20577-3151
ralf.steinborn@vetmeduni.ac.at

oder

Dipl. Biol. Lena S. Pflüger
Department for Anthropology
Universität of Vienna
T +43 6607332244
lena.pflueger@univie.ac.at

Released by:
Susanna Berger
Science Communication / Corporate Communications
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1153
susanna.berger@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2015/...

Dr. Susanna Berger | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
29.05.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

nachricht Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke
29.05.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

New drug reduces transplant and mortality rates significantly in patients with hepatitis C

29.05.2017 | Statistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>