Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent Grooves

12.12.2008
Fingerprints from the scene of the crime will soon reveal drug abuse

In order to arrest a culprit, police look for fingerprints at the scene of the crime.

Magnetic powder is applied to the surfaces of objects with a magnetic brush to make these latent fingerprints visible. It may now be possible to use latent fingerprints to detect the use of drugs as well.

As reported in the journal Angewandte Chemie, forensic scientists would not even have to change the magnetic brush technique they have used since the 1960s: British scientists at the University of East Anglia in Norwich and King’s College in London have developed a process based on magnetic particles and antibodies that causes fingerprints to fluoresce if they were made by a drug user.

Components of drug metabolites can be detected in sweat. “This also works for the tiny amounts of sweat left behind in the characteristic pattern of grooves and ridges of fingerprints left on the objects that were touched,” explains David A. Russell. To do this, Russell and his team used specially coated magnetic particles with antibodies attached. The antibodies bind specifically to drug components or metabolites. Fingerprints of volunteer test subjects from drug clinics were dusted with this magnetic powder. The prints were then treated with a solution containing an antibody bound to a fluorescing dye. This second antibody binds to the first. If the fingerprint was made by a drug user, it turned yellowish brown. Under visible light, these fingerprints glowed green or red, depending on the fluorescent dye used.

By using the corresponding specific antibodies, the scientists were able to detect THC (the main active component of marijuana), benzoylecgonine (the primary metabolite of cocaine), and methadone and the primary metabolite of methadone in the fingerprints of test subjects. Variation of the antibodies makes it possible to develop detection procedures for other substances of interest.

The characteristic pattern of the fingerprint is maintained. The fingerprints are highly resolved and can be lifted for comparison with known fingerprints, just as in the standard procedure. At higher magnification it is even possible to see the tiny sweat pores along the ridges of the fingertip, which can also be used for unambiguous identification.

“The advantage of this method is that potentially only simple, portable equipment is needed, which can be brought along for a crime scene investigation with no problem,” says Russell. “The magnetic particles make it possible to remove excess reagent with the usual magnetic brush, no complex washing procedures would be needed.”

Author: David A. Russell, University of East Anglia, Norwich (UK), http://www1.uea.ac.uk/cap/people/faculty/dar/

Title: Imaging of Latent Fingerprints through the Detection of Drugs and Metabolites

Angewandte Chemie International Edition 2008, 47, No. 52, 10167–10170, doi: 10.1002/anie.200804348

David A. Russell | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www1.uea.ac.uk/cap/people/faculty/dar/

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>