Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fluorescent Grooves

12.12.2008
Fingerprints from the scene of the crime will soon reveal drug abuse

In order to arrest a culprit, police look for fingerprints at the scene of the crime.

Magnetic powder is applied to the surfaces of objects with a magnetic brush to make these latent fingerprints visible. It may now be possible to use latent fingerprints to detect the use of drugs as well.

As reported in the journal Angewandte Chemie, forensic scientists would not even have to change the magnetic brush technique they have used since the 1960s: British scientists at the University of East Anglia in Norwich and King’s College in London have developed a process based on magnetic particles and antibodies that causes fingerprints to fluoresce if they were made by a drug user.

Components of drug metabolites can be detected in sweat. “This also works for the tiny amounts of sweat left behind in the characteristic pattern of grooves and ridges of fingerprints left on the objects that were touched,” explains David A. Russell. To do this, Russell and his team used specially coated magnetic particles with antibodies attached. The antibodies bind specifically to drug components or metabolites. Fingerprints of volunteer test subjects from drug clinics were dusted with this magnetic powder. The prints were then treated with a solution containing an antibody bound to a fluorescing dye. This second antibody binds to the first. If the fingerprint was made by a drug user, it turned yellowish brown. Under visible light, these fingerprints glowed green or red, depending on the fluorescent dye used.

By using the corresponding specific antibodies, the scientists were able to detect THC (the main active component of marijuana), benzoylecgonine (the primary metabolite of cocaine), and methadone and the primary metabolite of methadone in the fingerprints of test subjects. Variation of the antibodies makes it possible to develop detection procedures for other substances of interest.

The characteristic pattern of the fingerprint is maintained. The fingerprints are highly resolved and can be lifted for comparison with known fingerprints, just as in the standard procedure. At higher magnification it is even possible to see the tiny sweat pores along the ridges of the fingertip, which can also be used for unambiguous identification.

“The advantage of this method is that potentially only simple, portable equipment is needed, which can be brought along for a crime scene investigation with no problem,” says Russell. “The magnetic particles make it possible to remove excess reagent with the usual magnetic brush, no complex washing procedures would be needed.”

Author: David A. Russell, University of East Anglia, Norwich (UK), http://www1.uea.ac.uk/cap/people/faculty/dar/

Title: Imaging of Latent Fingerprints through the Detection of Drugs and Metabolites

Angewandte Chemie International Edition 2008, 47, No. 52, 10167–10170, doi: 10.1002/anie.200804348

David A. Russell | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www1.uea.ac.uk/cap/people/faculty/dar/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>