Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The flexible tail of the prion protein poisons brain cells

01.08.2013
For decades, there has been no answer to the question of why the altered prion protein is poisonous to brain cells.

Neuropathologists from the University of Zurich and University Hospital Zurich have now shown that it is the flexible tail of the prion protein that triggers cell death. These findings have far-reaching consequences: only those antibodies that target the tail of the prion protein are suitable as potential drugs for combating prion diseases.

Prion proteins are the infectious pathogens that cause Mad Cow Disease and Creutzfeldt-Jakob disease. They occur when a normal prion protein becomes deformed and clumped. The naturally occurring prion protein is harmless and can be found in most organisms. In humans, it is found in our brain cell membrane. By contrast, the abnormally deformed prion protein is poisonous for the brain cells.

Adriano Aguzzi, Professor of Neuropathology at the University of Zurich and University Hospital Zurich, has spent many years exploring why this deformation is poisonous. Aguzzi’s team has now discovered that the prion protein has a kind of «switch» that controls its toxicity. This switch covers a tiny area on the surface of the protein. If another molecule, for example an antibody, touches this switch, a lethal mechanism is triggered that can lead to very fast cell death.

Flexible tail induces cell death

In the current edition of «Nature», the scientists demonstrate that the prion protein molecule comprises two functionally distinct parts: a globular domain, which is tethered to the cell membrane, and a long and unstructured tail. Under normal conditions, this tail is very important in order to maintain the functioning of nerve cells. By contrast, in the case of a prion infection the pathogenic prion protein interacts with the globular part and the tail causes cell death – this is the hypothesis put forward by the researchers.

Aguzzi and his team tested this by generating mimetic antibodies in tissue sections from the cerebellum of mice which have a similar toxicity to that of a prion infection. The researchers found that these antibodies tripped the switch of the prion protein. «Prion proteins with a trimmed version of the flexible tail can, however, no longer damage the brain cells, even if their switch has been recognized by antibodies», explains Adriano Aguzzi. «This flexible tail is responsible for causing cell death.» If the tail is bound and made inaccessible using a further antibody, activation of the switch can likewise no longer trigger cell death.

«Our discovery has far-reaching consequences for understanding prion diseases», says Aguzzi. The findings reveal that only those antibodies that target the prion protein tail are suitable for use as potential drugs. By contrast, antibodies that trip the switch of the prion are very harmful and dangerous.

Literature:
Tiziana Sonati, Regina R. Reimann, Jeppe Falsig, Pravas Kumar Baral, Tracy O’Connor, Simone Hornemann, Sine Yaganoglu, Bei Li, Uli S. Herrmann, Barbara Wieland, Mridula Swayampakula, Muhammad Hafizur Rahman, Dipankar Das, Nat Kav, Roland Riek, Pawel P. Liberski, Michael N. G. James, and Adriano Aguzzi. The flexible tail of the prion protein mediates the toxicity of antiprion antibodies. Nature. July 31, 2013. Doi: 10.1038/nature12402
Contacts:
Prof. Adriano Aguzzi
Institute of Neuropathology
University of Zurich
Phone: +41 44 255 21 07
E-mail: adriano.aguzzi@usz.ch
Weitere Informationen:
http://www.mediadesk.uzh.ch/articles/2013/der-flexible-schweif-des-prions-vergiftet-hirnzellen_en.html

– News release of the University of Zurich in English, including video

http://www.mediadesk.uzh.ch/articles/2013/der-flexible-schweif-des-prions-vergiftet-hirnzellen.html

– News release of the University of Zurich in German, including video

Beat Müller | Universität Zürich
Further information:
http://www.usz.ch

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Carefully crafted light pulses control neuron activity

20.11.2017 | Life Sciences

SYSTEMS INTEGRATION 2018 in Switzerland focuses on building blocks for industrial digitalization

20.11.2017 | Trade Fair News

Heavy nitrogen molecules reveal planetary-scale tug-of-war

20.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>