Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Females can place limits on evolution of attractive features in males, research shows

05.08.2011
Female cognitive ability can limit how melodious or handsome males become over evolutionary time, biologists from The University of Texas at Austin, Louisiana State University Health Sciences Center and the Smithsonian Tropical Research Institute have observed.

Males across the animal world have evolved elaborate traits to attract females, from huge peacock tails to complex bird songs and frog calls. But what keeps them from getting more colorful feathers, longer tails, or more melodious songs? Predators, for one. Increased elaboration can draw predators in, placing an enormous cost to males with these sexy traits.

In a new paper appearing this week in Science, a group of biologists have shown that females themselves can also limit the evolution of increased elaboration.

Studying neotropical túngara frogs, they found that females lose their ability to detect differences in male mating calls as the calls become more elaborate.

... more about:
»females »integrative biology »male frogs

"We have shown that the female túngara frog brains have evolved to process some kinds of information and not others," says Mike Ryan, professor of integrative biology at The University of Texas at Austin, "and that this limits the evolution of those signals."

Imagine looking at a group of five oranges next to a group of six. At a glance, you would quickly notice that one group has one more orange than the other. Now, imagine looking at a pile of 100 oranges next to a pile of 101. It would be nearly impossible for you to notice the difference in size (one orange) between those two piles at a glance. This is known as Weber's Law, which states that stimuli are compared based on proportional differences rather than absolute differences (one orange in the case above).

In túngara frogs, males gather en masse to attract female frogs with a call that is made up of a longer "whine" followed by one or more short "chucks."

Through a series of experiments conducted in Panama, Ryan and his collaborators found that females prefer male calls with the most chucks, but their preference was based on the ratio of the number of chucks. As males elaborate their call by adding more chucks, their relative increase in attractiveness decreases due to a perceptual constraint on the part of females.

Male túngara frog calls also attract a predator: the frog eating fringe-lipped bat. To confirm that male song elaboration wasn't limited by these predators, the researchers also studied how the bats respond to additional "chucks" in the male call.

They discovered that hunting bats choose their prey based on chuck number ratio, just as the female frogs do. So, as males elaborate their call by adding chucks, the relative increase in predation risk decreases with each additional chuck.

"What this tells us is that predation risk is unlikely to limit male call evolution," says Karin Akre, lecturer at The University of Texas at Austin. "Instead, it is the females' cognition that limits the evolution of increasing chuck number."

Additional contacts:

Lee Clippard, public affairs, 512-232-0675, lclippard@mail.utexas.edu

Mike Ryan, professor of integrative biology, 512-471-5078, mryan@mail.utexas.edu

Karin Akre | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: females integrative biology male frogs

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>