Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Females can place limits on evolution of attractive features in males, research shows

05.08.2011
Female cognitive ability can limit how melodious or handsome males become over evolutionary time, biologists from The University of Texas at Austin, Louisiana State University Health Sciences Center and the Smithsonian Tropical Research Institute have observed.

Males across the animal world have evolved elaborate traits to attract females, from huge peacock tails to complex bird songs and frog calls. But what keeps them from getting more colorful feathers, longer tails, or more melodious songs? Predators, for one. Increased elaboration can draw predators in, placing an enormous cost to males with these sexy traits.

In a new paper appearing this week in Science, a group of biologists have shown that females themselves can also limit the evolution of increased elaboration.

Studying neotropical túngara frogs, they found that females lose their ability to detect differences in male mating calls as the calls become more elaborate.

... more about:
»females »integrative biology »male frogs

"We have shown that the female túngara frog brains have evolved to process some kinds of information and not others," says Mike Ryan, professor of integrative biology at The University of Texas at Austin, "and that this limits the evolution of those signals."

Imagine looking at a group of five oranges next to a group of six. At a glance, you would quickly notice that one group has one more orange than the other. Now, imagine looking at a pile of 100 oranges next to a pile of 101. It would be nearly impossible for you to notice the difference in size (one orange) between those two piles at a glance. This is known as Weber's Law, which states that stimuli are compared based on proportional differences rather than absolute differences (one orange in the case above).

In túngara frogs, males gather en masse to attract female frogs with a call that is made up of a longer "whine" followed by one or more short "chucks."

Through a series of experiments conducted in Panama, Ryan and his collaborators found that females prefer male calls with the most chucks, but their preference was based on the ratio of the number of chucks. As males elaborate their call by adding more chucks, their relative increase in attractiveness decreases due to a perceptual constraint on the part of females.

Male túngara frog calls also attract a predator: the frog eating fringe-lipped bat. To confirm that male song elaboration wasn't limited by these predators, the researchers also studied how the bats respond to additional "chucks" in the male call.

They discovered that hunting bats choose their prey based on chuck number ratio, just as the female frogs do. So, as males elaborate their call by adding chucks, the relative increase in predation risk decreases with each additional chuck.

"What this tells us is that predation risk is unlikely to limit male call evolution," says Karin Akre, lecturer at The University of Texas at Austin. "Instead, it is the females' cognition that limits the evolution of increasing chuck number."

Additional contacts:

Lee Clippard, public affairs, 512-232-0675, lclippard@mail.utexas.edu

Mike Ryan, professor of integrative biology, 512-471-5078, mryan@mail.utexas.edu

Karin Akre | EurekAlert!
Further information:
http://www.utexas.edu

Further reports about: females integrative biology male frogs

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>