Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fatal cellular malfunction identified in Huntington’s disease

24.06.2014

Researchers believe they have learned how mutations in the gene that causes Huntington’s disease kill brain cells, a finding that could open new opportunities for treating the fatal disorder. Scientists first linked the gene to the inherited disease more than 20 years ago.

Huntington’s disease affects five to seven people out of every 100,000. Symptoms, which typically begin in middle age, include involuntary jerking movements, disrupted coordination and cognitive problems such as dementia. Drugs cannot slow or stop the progressive decline caused by the disorder, which leaves patients unable to walk, talk or eat.


Robert Boston

Hiroko Yano, PhD, right, led a team of researchers that learned how the fatal inherited disorder Huntington’s disease kills brain cells. Co-author Albert Kim also is pictured.

Lead author Hiroko Yano, PhD, of Washington University School of Medicine in St. Louis, found in mice and in mouse brain cell cultures that the disease impairs the transfer of proteins to energy-making factories inside brain cells. The factories, known as mitochondria, need these proteins to maintain their function. When disruption of the supply line disables the mitochondria, brain cells die.

“We showed the problem could be fixed by making cells overproduce the proteins that make this transfer possible,” said Yano, assistant professor of neurological surgery, neurology and genetics. “We don’t know if this will work in humans, but it’s exciting to have a solid new lead on how this condition kills brain cells.”

The findings are available online in Nature Neuroscience.

Huntington’s disease is caused by a defect in the huntingtin gene, which makes the huntingtin protein. Life expectancy after initial onset is about 20 years.

Scientists have known for some time that the mutated form of the huntingtin protein impairs mitochondria and that this disruption kills brain cells. But they have had difficulty understanding specifically how the gene harms the mitochondria.

For the new study, Yano and collaborators at the University of Pittsburgh worked with mice that were genetically modified to simulate the early stages of the disorder.

Yano and her colleagues found that the mutated huntingtin protein binds to a group of proteins called TIM23. This protein complex normally helps transfer essential proteins and other supplies to the mitochondria. The researchers discovered that the mutated huntingtin protein impairs that process.

The problem seems to be specific to brain cells early in the disease. At the same point in the disease process, the scientists found no evidence of impairment in liver cells, which also produce the mutated huntingtin protein.

The researchers speculated that brain cells might be particularly reliant on their mitochondria to power the production and recycling of the chemical signals they use to transmit information. This reliance could make the cells vulnerable to disruption of the mitochondria.

Other neurodegenerative conditions, including Alzheimer’s disease and amyotrophic lateral sclerosis, also known as Lou Gehrig’s disease, have been linked to problems with mitochondria. Scientists may be able to build upon these new findings to better understand these disorders.

Funding from the National Institutes of Health (NIH) (R01 NS039324, R01 NS077748, K01 AG033724), the Huntington’s Disease Society of America (Coalition for the Cure), the Brain & Behavior Research Foundation, and the DSF Charitable Foundation supported this research.

Yano H, Baranov SV, Baranova OV, Kim J, Pan Y, Yablonska S, Carlisle DL, Ferrante RJ, Kim AH, Friedlander RM. Inhibition of mitochondrial protein import by mutant huntingtin. Nature Neuroscience, published online May 18, 2014.

Washington University School of Medicine’s 2,100 employed and volunteer faculty physicians also are the medical staff of Barnes-Jewish and St. Louis Children’s hospitals. The School of Medicine is one of the leading medical research, teaching and patient-care institutions in the nation, currently ranked sixth in the nation by U.S. News & World Report. Through its affiliations with Barnes-Jewish and St. Louis Children’s hospitals, the School of Medicine is linked to BJC HealthCare.

Michael C. Purdy | Eurek Alert!
Further information:
https://news.wustl.edu/news/Pages/27042.aspx

More articles from Life Sciences:

nachricht Faster detection of pathogens in the lungs
24.06.2016 | Universität Zürich

nachricht How yeast cells regulate their fat balance
23.06.2016 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First experimental quantum simulation of particle physics phenomena

Physicists in Innsbruck have realized the first quantum simulation of lattice gauge theories, building a bridge between high-energy theory and atomic physics. In the journal Nature, Rainer Blatt‘s and Peter Zoller’s research teams describe how they simulated the creation of elementary particle pairs out of the vacuum by using a quantum computer.

Elementary particles are the fundamental buildings blocks of matter, and their properties are described by the Standard Model of particle physics. The...

Im Focus: Is There Life On Mars?

Survivalist back from Space - 18 months on the outer skin of the ISS

A year and a half on the outer wall of the International Space Station ISS in altitude of 400 kilometers is a real challenge. Whether a primordial bacterium...

Im Focus: CWRU physicists deploy magnetic vortex to control electron spin

Potential technology for quantum computing, keener sensors

Researchers at Case Western Reserve University have developed a way to swiftly and precisely control electron spins at room temperature.

Im Focus: Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay...

Im Focus: Discovery of gold nanocluster 'double' hints at other shape changing particles

New analysis approach brings two unique atomic structures into focus

Chemically the same, graphite and diamonds are as physically distinct as two minerals can be, one opaque and soft, the other translucent and hard. What makes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ERES 2016: The largest conference in the European real estate industry

09.06.2016 | Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

 
Latest News

Nanoscientists develop the 'ultimate discovery tool'

24.06.2016 | Materials Sciences

Russian physicists create a high-precision 'quantum ruler'

24.06.2016 | Physics and Astronomy

Hubble confirms new dark spot on Neptune

24.06.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>