Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The many faces of the bacterial defense system

02.05.2013
HZI researchers discover multiple versions of microbial defense genes that lend themselves to being exploited by biotechnology

Even bacteria have a kind of “immune system” they use to defend themselves against unwanted intruders – in their case, viruses. Scientists at the Helmholtz Center for Infection Research (HZI) in Braunschweig, Germany, were now able to show that this defense system is much more diverse than previously thought and that it comes in multiple versions. Their goal is to use the various newly discovered versions of the CRISPR-Cas gene for the targeted manipulation of genetic information, particularly for medical purposes.


Streptococcus pyogenes, shown here while entering a cell, is one of the germs whose CRISPR-Cas system the scientists from Braunschweig have studied.
© HZI / Rohde

The human immune system’s main function is to protect us against invading bacteria, viruses, and other pathogens. To perform its job, the system has evolved into a highly complex ensemble of cells, messengers, and antibody molecules that is capable of recognizing different pathogens, defending us against them, and storing information about them.

Even the bacteria themselves are threatened by pathogens: Certain viruses, the bacteriophages (literally, “bacteria eaters”), have become specialized to invade bacterial cells and proliferate inside of them. In order to get rid of these unwanted guests, many species of bacteria make use of an arsenal of molecules that works according to similar principles as an immune system does.

The Cas enzyme recognizes DNA molecules that contain non-self genetic information, e.g. from bacteriophages, and cleaves them at specific sites. In order to recognize these molecules, a molecular copy of specific, characteristic sections of the foreign DNA is required. This copy, a kind of “molecular profile” of bacteriophage DNA and other foreign genetic material, exists as RNA, an important cellular building block, which is used, among other things, as a temporary storage site of genetic information.

The template for this profile is stored in the bacterium’s own genes, specifically in those regions scientists call CRISPR (which stands for “clustered regularly interspaced small palindromic repeats” or, more simply put, the “regular arrangement of small, symmetric repeats” in the sequence of the DNA building blocks).

Together, the enzyme and the profile RNA constitute the CRISPR-Cas system.
Now, Prof. Emmanuelle Charpentier’s work group has scoured the genome of several hundred bacterial species in the search of CRISPR-Cas genes – and has made several discoveries.

“We were able to identify new CRISPR-Cas genes in a number of bacterial species,” says Charpentier, an HZI researcher who also teaches at Hannover Medical School (MHH). Among these species are much-feared germs like Streptococcus pyogenes and the meningitis pathogen, Neisseria meningitidis. “We have identified a number of these genes with the help of computers by examining known DNA sequences of the bacteria in question.” Charpentier’s conclusion: “The CRISPR system is not only widespread among bacteria, it also exists as an incredible range of different versions.”

Knowing about these different versions is not only of academic interest but can also be tremendously useful for gene technology: ”The CRISPR-Cas system is capable of cleaving DNA at very specific sites,” explains Charpentier. “The Cas enzyme can already be modified in such a way that it becomes active not only in bacteria but also in animal and human cell cultures.” If this kind of enzyme is specifically equipped with new RNA “profiles,” it cleaves the cell’s genome at precisely defined sites. “If you then use specific cellular repair mechanisms to mend the DNA strands and connect their loose ends, you can then specifically introduce new sections of genes into cellular DNA.”

This opens considerable options for new forms of therapy. “I am certain that the CRISPR-Cas technology has tremendous potential,” says Charpentier. “Especially for medical applications like gene therapy.”

Original publication:
Krzysztof Chylinski, Anaïs Le Rhun, Emmanuelle Charpentier
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
RNA Biology, 2013

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>