Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The many faces of the bacterial defense system

02.05.2013
HZI researchers discover multiple versions of microbial defense genes that lend themselves to being exploited by biotechnology

Even bacteria have a kind of “immune system” they use to defend themselves against unwanted intruders – in their case, viruses. Scientists at the Helmholtz Center for Infection Research (HZI) in Braunschweig, Germany, were now able to show that this defense system is much more diverse than previously thought and that it comes in multiple versions. Their goal is to use the various newly discovered versions of the CRISPR-Cas gene for the targeted manipulation of genetic information, particularly for medical purposes.


Streptococcus pyogenes, shown here while entering a cell, is one of the germs whose CRISPR-Cas system the scientists from Braunschweig have studied.
© HZI / Rohde

The human immune system’s main function is to protect us against invading bacteria, viruses, and other pathogens. To perform its job, the system has evolved into a highly complex ensemble of cells, messengers, and antibody molecules that is capable of recognizing different pathogens, defending us against them, and storing information about them.

Even the bacteria themselves are threatened by pathogens: Certain viruses, the bacteriophages (literally, “bacteria eaters”), have become specialized to invade bacterial cells and proliferate inside of them. In order to get rid of these unwanted guests, many species of bacteria make use of an arsenal of molecules that works according to similar principles as an immune system does.

The Cas enzyme recognizes DNA molecules that contain non-self genetic information, e.g. from bacteriophages, and cleaves them at specific sites. In order to recognize these molecules, a molecular copy of specific, characteristic sections of the foreign DNA is required. This copy, a kind of “molecular profile” of bacteriophage DNA and other foreign genetic material, exists as RNA, an important cellular building block, which is used, among other things, as a temporary storage site of genetic information.

The template for this profile is stored in the bacterium’s own genes, specifically in those regions scientists call CRISPR (which stands for “clustered regularly interspaced small palindromic repeats” or, more simply put, the “regular arrangement of small, symmetric repeats” in the sequence of the DNA building blocks).

Together, the enzyme and the profile RNA constitute the CRISPR-Cas system.
Now, Prof. Emmanuelle Charpentier’s work group has scoured the genome of several hundred bacterial species in the search of CRISPR-Cas genes – and has made several discoveries.

“We were able to identify new CRISPR-Cas genes in a number of bacterial species,” says Charpentier, an HZI researcher who also teaches at Hannover Medical School (MHH). Among these species are much-feared germs like Streptococcus pyogenes and the meningitis pathogen, Neisseria meningitidis. “We have identified a number of these genes with the help of computers by examining known DNA sequences of the bacteria in question.” Charpentier’s conclusion: “The CRISPR system is not only widespread among bacteria, it also exists as an incredible range of different versions.”

Knowing about these different versions is not only of academic interest but can also be tremendously useful for gene technology: ”The CRISPR-Cas system is capable of cleaving DNA at very specific sites,” explains Charpentier. “The Cas enzyme can already be modified in such a way that it becomes active not only in bacteria but also in animal and human cell cultures.” If this kind of enzyme is specifically equipped with new RNA “profiles,” it cleaves the cell’s genome at precisely defined sites. “If you then use specific cellular repair mechanisms to mend the DNA strands and connect their loose ends, you can then specifically introduce new sections of genes into cellular DNA.”

This opens considerable options for new forms of therapy. “I am certain that the CRISPR-Cas technology has tremendous potential,” says Charpentier. “Especially for medical applications like gene therapy.”

Original publication:
Krzysztof Chylinski, Anaïs Le Rhun, Emmanuelle Charpentier
The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems
RNA Biology, 2013

Dr. Jan Grabowski | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>