Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evaluation of microscopy techniques may help scientists to better understand ancient plants

13.06.2012
By pollen morphologies, prehistoric flora can be more effectively classified

In a paper published in PLoS ONE, scientists at the University of Illinois released their findings on what microscopy techniques are needed to identify the shape and texture of pollen grains. Understanding pollen morphology is important to classifying ancient vegetation.

Because pollen morphologies often align quite closely to taxonomic groupings, understanding the appearance of ancient pollen allows scientists to better understand prehistoric flora in the context of modern-day ancestors.

The team's research, led by Surangi Punyasena and Mayandi Sivaguru of the Institute for Genomic Biology, focused on comparing how several reflected and transmitted light microscopy techniques image individual pollen grains. By choosing three pollen samples of diverse grain size and texture, they were better able to understand how each technique functions in different situations.

"The accuracy and consistency of pollen analysis relies on our ability to see as much morphology as possible," explains Punyasena. "Images like those produced by this research are the foundation of my lab's quantitative morphological work - work that we hope will allow us to break through the many taxonomic limitations of pollen identification in the very near future."

"The results of this paper have encouraged us to revisit some longstanding classification problems in vegetation science," says Luke Mander, co-author. "For example, there are around 11,000 species of grass on the planet today, but these species produce pollen that looks extraordinarily similar. This means that it is extremely difficult to use fossil pollen grains to reconstruct the diversification history and evolution of this major plant group. Advances in imaging technology, such as the super-resolution technique used in our paper, allow us to image morphological features less than 200 nanometers in size using light."

"In the future, we hope these morphological features might be used to study the diversity and composition of ancient grasslands," he adds.

The team found that no reflected or transmitted light technique provided a completely adequate image. While reflected light techniques capture pollen shape effectively, they remain unable to resolve fine surface textures. Transmitted light techniques, however, are able to resolve even extremely fine textures, but give poor idea of grain shape.

They conclude that to construct an accurate image through conventional microscopy techniques, it is best to use a combination of both transmitted and reflected light imaging.

"Most pollen analysis is currently completed using transmitted light. This paper demonstrates how much more can be seen - and consequently analyzed - with alternative imaging techniques. This paper provides a much needed comparison of the capabilities of existing technologies that should be incorporated into mainstream pollen analysis," says Punyasena.

"Some of the most exciting results of this work are the images that were produced using super-resolution structured illumination (SR-SIM). There is little existing research on the use of SR-SIM with auto-fluorescent material like pollen," she adds. "Our demonstration of its ability to capture morphology below the diffraction limit of light strongly suggests that SR-SIM is a viable alternative to electron microscopy (EM) and may represent the future of pollen analysis."

This project was funded in large part by National Science Foundation's program Innovations in Biological Imaging and Visualization.

The full article can be found at http://dx.plos.org/10.1371/journal.pone.0039129.

"Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques," Mayandi Sivaguru, Luke Mander, Glenn Fried, Surangi W. Punyasena

Nicholas Vasi | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht The big clean up after stress
25.05.2018 | Julius-Maximilians-Universität Würzburg

nachricht Complementing conventional antibiotics
24.05.2018 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>