Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evaluation of microscopy techniques may help scientists to better understand ancient plants

13.06.2012
By pollen morphologies, prehistoric flora can be more effectively classified

In a paper published in PLoS ONE, scientists at the University of Illinois released their findings on what microscopy techniques are needed to identify the shape and texture of pollen grains. Understanding pollen morphology is important to classifying ancient vegetation.

Because pollen morphologies often align quite closely to taxonomic groupings, understanding the appearance of ancient pollen allows scientists to better understand prehistoric flora in the context of modern-day ancestors.

The team's research, led by Surangi Punyasena and Mayandi Sivaguru of the Institute for Genomic Biology, focused on comparing how several reflected and transmitted light microscopy techniques image individual pollen grains. By choosing three pollen samples of diverse grain size and texture, they were better able to understand how each technique functions in different situations.

"The accuracy and consistency of pollen analysis relies on our ability to see as much morphology as possible," explains Punyasena. "Images like those produced by this research are the foundation of my lab's quantitative morphological work - work that we hope will allow us to break through the many taxonomic limitations of pollen identification in the very near future."

"The results of this paper have encouraged us to revisit some longstanding classification problems in vegetation science," says Luke Mander, co-author. "For example, there are around 11,000 species of grass on the planet today, but these species produce pollen that looks extraordinarily similar. This means that it is extremely difficult to use fossil pollen grains to reconstruct the diversification history and evolution of this major plant group. Advances in imaging technology, such as the super-resolution technique used in our paper, allow us to image morphological features less than 200 nanometers in size using light."

"In the future, we hope these morphological features might be used to study the diversity and composition of ancient grasslands," he adds.

The team found that no reflected or transmitted light technique provided a completely adequate image. While reflected light techniques capture pollen shape effectively, they remain unable to resolve fine surface textures. Transmitted light techniques, however, are able to resolve even extremely fine textures, but give poor idea of grain shape.

They conclude that to construct an accurate image through conventional microscopy techniques, it is best to use a combination of both transmitted and reflected light imaging.

"Most pollen analysis is currently completed using transmitted light. This paper demonstrates how much more can be seen - and consequently analyzed - with alternative imaging techniques. This paper provides a much needed comparison of the capabilities of existing technologies that should be incorporated into mainstream pollen analysis," says Punyasena.

"Some of the most exciting results of this work are the images that were produced using super-resolution structured illumination (SR-SIM). There is little existing research on the use of SR-SIM with auto-fluorescent material like pollen," she adds. "Our demonstration of its ability to capture morphology below the diffraction limit of light strongly suggests that SR-SIM is a viable alternative to electron microscopy (EM) and may represent the future of pollen analysis."

This project was funded in large part by National Science Foundation's program Innovations in Biological Imaging and Visualization.

The full article can be found at http://dx.plos.org/10.1371/journal.pone.0039129.

"Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques," Mayandi Sivaguru, Luke Mander, Glenn Fried, Surangi W. Punyasena

Nicholas Vasi | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Protein 'spy' gains new abilities
28.04.2017 | Rice University

nachricht How Plants Form Their Sugar Transport Routes
28.04.2017 | Universität Heidelberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

How Plants Form Their Sugar Transport Routes

28.04.2017 | Life Sciences

Protein 'spy' gains new abilities

28.04.2017 | Life Sciences

Researchers unravel the social network of immune cells

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>