Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Evaluation of microscopy techniques may help scientists to better understand ancient plants

13.06.2012
By pollen morphologies, prehistoric flora can be more effectively classified

In a paper published in PLoS ONE, scientists at the University of Illinois released their findings on what microscopy techniques are needed to identify the shape and texture of pollen grains. Understanding pollen morphology is important to classifying ancient vegetation.

Because pollen morphologies often align quite closely to taxonomic groupings, understanding the appearance of ancient pollen allows scientists to better understand prehistoric flora in the context of modern-day ancestors.

The team's research, led by Surangi Punyasena and Mayandi Sivaguru of the Institute for Genomic Biology, focused on comparing how several reflected and transmitted light microscopy techniques image individual pollen grains. By choosing three pollen samples of diverse grain size and texture, they were better able to understand how each technique functions in different situations.

"The accuracy and consistency of pollen analysis relies on our ability to see as much morphology as possible," explains Punyasena. "Images like those produced by this research are the foundation of my lab's quantitative morphological work - work that we hope will allow us to break through the many taxonomic limitations of pollen identification in the very near future."

"The results of this paper have encouraged us to revisit some longstanding classification problems in vegetation science," says Luke Mander, co-author. "For example, there are around 11,000 species of grass on the planet today, but these species produce pollen that looks extraordinarily similar. This means that it is extremely difficult to use fossil pollen grains to reconstruct the diversification history and evolution of this major plant group. Advances in imaging technology, such as the super-resolution technique used in our paper, allow us to image morphological features less than 200 nanometers in size using light."

"In the future, we hope these morphological features might be used to study the diversity and composition of ancient grasslands," he adds.

The team found that no reflected or transmitted light technique provided a completely adequate image. While reflected light techniques capture pollen shape effectively, they remain unable to resolve fine surface textures. Transmitted light techniques, however, are able to resolve even extremely fine textures, but give poor idea of grain shape.

They conclude that to construct an accurate image through conventional microscopy techniques, it is best to use a combination of both transmitted and reflected light imaging.

"Most pollen analysis is currently completed using transmitted light. This paper demonstrates how much more can be seen - and consequently analyzed - with alternative imaging techniques. This paper provides a much needed comparison of the capabilities of existing technologies that should be incorporated into mainstream pollen analysis," says Punyasena.

"Some of the most exciting results of this work are the images that were produced using super-resolution structured illumination (SR-SIM). There is little existing research on the use of SR-SIM with auto-fluorescent material like pollen," she adds. "Our demonstration of its ability to capture morphology below the diffraction limit of light strongly suggests that SR-SIM is a viable alternative to electron microscopy (EM) and may represent the future of pollen analysis."

This project was funded in large part by National Science Foundation's program Innovations in Biological Imaging and Visualization.

The full article can be found at http://dx.plos.org/10.1371/journal.pone.0039129.

"Capturing the Surface Texture and Shape of Pollen: A Comparison of Microscopy Techniques," Mayandi Sivaguru, Luke Mander, Glenn Fried, Surangi W. Punyasena

Nicholas Vasi | EurekAlert!
Further information:
http://www.illinois.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>