Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Engineering excitable cells for studies of bioelectricity and cell therapy

20.07.2011
By altering the genetic makeup of normally "unexcitable" cells, Duke University bioengineers have turned them into cells capable of generating and passing electrical current.

This proof-of-concept advance could have broad implications in treating diseases of the nervous system or the heart, since these tissues rely on cells with the ability to communicate with adjacent cells in order to function properly. This communication is achieved through the passage of electrical impulses, known as action potentials, from cell to cell.

The researchers achieved this transformation by introducing genes into the cells that result in the formation of ion channels which are openings, or gates, on the surface of cells. Ion channels allow the flow of electrically charged molecules, or ions, to exit or enter the cell thus enabling the transfer of electric current from one cell to its neighbor.

"By introducing only three specific ion channels, we were able to give normally electrically inactive cells the ability to become electrically excitable," said Rob Kirkton, graduate student in the laboratory of senior investigator Nenad Bursac, associate professor of biomedical engineering at Duke's Pratt School of Engineering.

"We also demonstrated proof-of-concept experiments in which these modified cells were able restore large electrical gaps within and between rat heart cells," Kirkton continued. "This approach to genetically engineering electrical excitability may stimulate the development of new cell or gene-based therapies for excitable tissue repair."

The results of the Duke experiments were published in the journal Nature Communications. The researchers are supported by the National Science Foundation, the American Heart Association and the National Institutes of Health.

"We believe that our approach opens the door to a wide range of novel studies involving electrical communication between cells and may also help us to understand and develop treatments for disorders of electrically active tissues," Bursac said. "For example, genetically engineered excitable cells could be important in treating heart attacks, in which damaged portions of heart muscle become electrically disconnected and are unable to contract in synchrony with neighboring healthy cells."

The Duke researchers hypothesized that a few key ion channels are sufficient to enable cell excitation. They determined that three particular channels could do the job, including those carrying potassium ions, sodium ions, and a gap junction channel, a highly specialized structure that enables cell-to-cell electrical communication.

"All three of these ion channels play critical roles in the generation and propagation of electrical activity in the mammalian heart," Kirkton explained.

After demonstrating that their genetic manipulations made unexcitable human kidney cells excitable, they tested whether groups of such cells could carry electrical signals from heart cell to heart cell, both in two-dimensional and three-dimensional cell culture models.

In a key set of experiments, the researchers created an "S"-shaped pathway, with clusters of normal, living rat heart cells at either end. The space between the two clusters was filled with a population of either unexcitable cells (the control), or the genetically engineered cells. When an electrical stimulus was applied to a heart cell cluster at one end of the setup, an electrical impulse traveled throughout these heart cells but immediately stopped and disappeared at the entrance to the "S"-shaped path containing the unexcitable control cells.

"However, when we used the genetically modified cells, the electrical impulse was rapidly regenerated and carried throughout the three-centimeter long pathway, eventually triggering the second cluster of cells to fire on the other side," Kirkton said. "Alternatively, if we applied the stimulus to the modified cells in the center of the pathway, the electrical impulse travelled outwardly in both directions toward the heart cells and electrically activated them."

The Duke scientists also said that their engineered excitable cells can be continuously and easily grown in the lab, are genetically and functionally identical to each other, and also have the capacity for further modifications to change their electrical or structural behavior.

"These cells can be used in the laboratory as a platform for investigating the roles that specific ion channels have in tissue-level bioelectricity as well as testing the effectiveness of new drugs or therapies on bioelectrical activity," Kirkton said. "They could potentially also be helpful in the design of new biosensors to detect disease or environmental toxins.

Richard Merritt | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Water world
20.11.2017 | Washington University in St. Louis

nachricht Carefully crafted light pulses control neuron activity
20.11.2017 | University of Illinois at Urbana-Champaign

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>