More effective and less risky when you paint the hull of your boat

By using smart combinations of the most environmentally friendly biocides in the paint, it is possible to both reduce the total quantity of biocides and dramatically reduce the environmental impact.

“It’s very easy to make an environmentally friendly hull paint, and just as easy to make an effective hull paint. Yet there is still no paint that is both effective and environmentally friendly, which leaves both environmental authorities and boat owners dissatisfied,” says Hans Blanck, Professor of Ecotoxicology at the Department of Plant and Environmental Sciences of the University of Gothenburg.

Professor Blanck has directed several sub-projects in the interdisciplinary research programme Marine Paint, which is financed by Mistra. Marine Paint is Sweden’s largest combined research programme in the area of marine fouling and environmentally sound hull paints. The project began in 2003 with a substance that had been found to be effective against barnacles: medetomidine. Today the researchers are developing formulas to prevent all types of fouling through what are known as optimised blends of biocides, that is to say substances that can kill or otherwise cause problems for living organisms.

“The hull paints of today often contain one or two different biocides, and they need to be highly dosed to eliminate all types of fouling organisms. The idea behind optimised blends is to base them on several complementary biocides in the paint. In this way the combinations make more efficient use of each biocide and less overdosing is needed. We get rid of all fouling and the total need for biocides in the paint is reduced dramatically as a result.”

To devise formulas for optimal blends, the researchers have developed a system of models in which the effect of different biocides on different types of fouling organisms is weighed up against the expected environmental risk. The result is a set of formulas – with different concentrations and combinations of biocides – that all are equally effective in preventing fouling. What distinguishes them is the anticipated risk to the environment. The formulas can therefore be adapted effectively to different conditions. The substances that the researchers have selected, in addition to medetomidine, are biocides that are on the market today and that will probably pass the ongoing evaluation under the EU Biocidal Products Directive.

Another common problem with present-day hull paints is that the active substances leach out too quickly. Large amounts of biocides are therefore needed for the paint to be effective over a long period.

“By using what are known as microcapsules, a microscopic bubble of polymer material containing dissolved bioicides, we can control release better. This technique works for virtually any biocide.”

Contact:
Hans Blanck, Professor, Department of Plant and Environmental Sciences, University of Gothenburg
+46 (0)31–786 2609
hans.blanck@dpes.gu.se

Media Contact

Helena Aaberg idw

More Information:

http://www.gu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Red light therapy for repairing spinal cord injury passes milestone

Patients with spinal cord injury (SCI) could benefit from a future treatment to repair nerve connections using red and near-infrared light. The method, invented by scientists at the University of…

Insect research is revolutionized by technology

New technologies can revolutionise insect research and environmental monitoring. By using DNA, images, sounds and flight patterns analysed by AI, it’s possible to gain new insights into the world of…

X-ray satellite XMM-newton sees ‘space clover’ in a new light

Astronomers have discovered enormous circular radio features of unknown origin around some galaxies. Now, new observations of one dubbed the Cloverleaf suggest it was created by clashing groups of galaxies….

Partners & Sponsors