Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Early human ancestors used their hands like modern humans


Pre-Homo human ancestral species, such as Australopithecus africanus, used human-like hand postures much earlier than was previously thought

Some of the morphological characteristics of the human hand are different from that of other primates enabling us to grab objects with precision and use them exerting a force. Yet, how did our early human ancestors use their hands?

The first metacarpals of a chimp, the fossil australopiths, and a human (top row). The bottom row constists of images from micro-computertomography-scans of the same specimens, showing a cross-section of the trabecular structure inside.

© Tracy Kivell

This question was long debated among scientists. Anthropologists from the University of Kent, working with researchers from University College London, the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany and the Vienna University of Technology in Austria, have produced the first research findings to support archaeological evidence for stone tool use among fossil australopiths three to two million years ago and found that Australopithecus africanus used their hands the way modern humans do.

The distinctly human ability for forceful precision (e.g., when turning a key) and power “squeeze” gripping (e.g., when using a hammer) is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of stone tools. However, it is unclear when these locomotory and manipulative transitions occurred.

Matthew Skinner and Tracy Kivell of the Max Planck Institute for Evolutionary Anthropology and the University of Kent used new techniques to reveal how fossil species were using their hands by examining the internal spongey structure of bone called trabeculae. Trabecular bone remodels quickly during life and can reflect the actual behaviour of individuals in their lifetime.

“Over time these structures adapt in a way that enables them to handle the daily loads in the best way possible“, says Dieter Pahr of the Institute of Lightweight Design and Structural Biomechanics at the Vienna University of Technology where special computer algorithms for the analysis of the computer tomography images of the bones had been developed.

The researchers first examined the trabeculae of hand bones of humans and chimpanzees. They found clear differences between humans, who have a unique ability for forceful precision gripping between thumb and fingers, and chimpanzees, who cannot adopt human-like postures. This unique human pattern is present in known non-arboreal and stone tool-making fossil human species, such as Neandertals.

The research shows that Australopithecus africanus, a three to two million-year-old species from South Africa traditionally considered not to have engaged in habitual tool manufacture, has a human-like trabecular bone pattern in the bones of the thumb and palm (the metacarpals) consistent with forceful opposition of the thumb and fingers typically adopted during tool use.

“This new evidence changes our understanding of the behaviour of our early ancestors and, in particular, suggests that in some aspects they were more similar to humans than we previously thought”, says Matthew Skinner of the Max Planck Institute for Evolutionary Anthropology and the University of Kent.

These results support previously published archaeological evidence for stone tool use in australopiths and provide skeletal evidence that our early ancestors used human-like hand postures much earlier and more frequently than previously considered. “There is growing evidence that the emergence of the genus Homo did not result from the emergence of entirely new behaviors but rather from the accentuation of traits already present in Australopithecus, including tool making and meat consumption”, says Jean-Jacques Hublin, director at the Max Planck Institute for Evolutionary Anthropology.


Prof. Dr. Jean-Jacques Hublin
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-351

Fax: +49 341 3550-399


Dr. Matthew Skinner
Max Planck Institute for Evolutionary Anthropology, Leipzig

University of Kent, Großbritannien
Phone: +44 1227 823937


Sandra Jacob
Press and Public Relations

Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122

Fax: +49 341 3550-119


Original publication
Matthew M. Skinner, Nicholas B. Stephens, Zewdi J. Tsegai, Alexandra C. Foote, N. Huynh Nguyen,Thomas Gross, Dieter H. Pahr, Jean-Jacques Hublin,Tracy L. Kivell

Human-like hand use in Australopithecus africanus

Science, 23 January 2015

Prof. Dr. Jean-Jacques Hublin | Max Planck Institute for Evolutionary Anthropology, Leipzig
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>