Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early human ancestors used their hands like modern humans

23.01.2015

Pre-Homo human ancestral species, such as Australopithecus africanus, used human-like hand postures much earlier than was previously thought

Some of the morphological characteristics of the human hand are different from that of other primates enabling us to grab objects with precision and use them exerting a force. Yet, how did our early human ancestors use their hands?


The first metacarpals of a chimp, the fossil australopiths, and a human (top row). The bottom row constists of images from micro-computertomography-scans of the same specimens, showing a cross-section of the trabecular structure inside.

© Tracy Kivell

This question was long debated among scientists. Anthropologists from the University of Kent, working with researchers from University College London, the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany and the Vienna University of Technology in Austria, have produced the first research findings to support archaeological evidence for stone tool use among fossil australopiths three to two million years ago and found that Australopithecus africanus used their hands the way modern humans do.

The distinctly human ability for forceful precision (e.g., when turning a key) and power “squeeze” gripping (e.g., when using a hammer) is linked to two key evolutionary transitions in hand use: a reduction in arboreal climbing and the manufacture and use of stone tools. However, it is unclear when these locomotory and manipulative transitions occurred.

Matthew Skinner and Tracy Kivell of the Max Planck Institute for Evolutionary Anthropology and the University of Kent used new techniques to reveal how fossil species were using their hands by examining the internal spongey structure of bone called trabeculae. Trabecular bone remodels quickly during life and can reflect the actual behaviour of individuals in their lifetime.

“Over time these structures adapt in a way that enables them to handle the daily loads in the best way possible“, says Dieter Pahr of the Institute of Lightweight Design and Structural Biomechanics at the Vienna University of Technology where special computer algorithms for the analysis of the computer tomography images of the bones had been developed.

The researchers first examined the trabeculae of hand bones of humans and chimpanzees. They found clear differences between humans, who have a unique ability for forceful precision gripping between thumb and fingers, and chimpanzees, who cannot adopt human-like postures. This unique human pattern is present in known non-arboreal and stone tool-making fossil human species, such as Neandertals.

The research shows that Australopithecus africanus, a three to two million-year-old species from South Africa traditionally considered not to have engaged in habitual tool manufacture, has a human-like trabecular bone pattern in the bones of the thumb and palm (the metacarpals) consistent with forceful opposition of the thumb and fingers typically adopted during tool use.

“This new evidence changes our understanding of the behaviour of our early ancestors and, in particular, suggests that in some aspects they were more similar to humans than we previously thought”, says Matthew Skinner of the Max Planck Institute for Evolutionary Anthropology and the University of Kent.

These results support previously published archaeological evidence for stone tool use in australopiths and provide skeletal evidence that our early ancestors used human-like hand postures much earlier and more frequently than previously considered. “There is growing evidence that the emergence of the genus Homo did not result from the emergence of entirely new behaviors but rather from the accentuation of traits already present in Australopithecus, including tool making and meat consumption”, says Jean-Jacques Hublin, director at the Max Planck Institute for Evolutionary Anthropology.

Contact

Prof. Dr. Jean-Jacques Hublin
Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-351

Fax: +49 341 3550-399

Email: hublin@eva.mpg.de


Dr. Matthew Skinner
Max Planck Institute for Evolutionary Anthropology, Leipzig

University of Kent, Großbritannien
Phone: +44 1227 823937

Email: M.Skinner@kent.ac.uk


Sandra Jacob
Press and Public Relations

Max Planck Institute for Evolutionary Anthropology, Leipzig
Phone: +49 341 3550-122

Fax: +49 341 3550-119

Email: info@eva.mpg.de


Original publication
Matthew M. Skinner, Nicholas B. Stephens, Zewdi J. Tsegai, Alexandra C. Foote, N. Huynh Nguyen,Thomas Gross, Dieter H. Pahr, Jean-Jacques Hublin,Tracy L. Kivell

Human-like hand use in Australopithecus africanus

Science, 23 January 2015

Prof. Dr. Jean-Jacques Hublin | Max Planck Institute for Evolutionary Anthropology, Leipzig
Further information:
http://www.mpg.de/8886704/australopithecus-africanus-hands

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>