Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug strategy attacks resistant leukemia and lymphoma

30.05.2012
Scientists build a synthetic peptide that overcomes cancer cells’ survival defenses

Scientists at the Dana-Farber/Children's Hospital Cancer Center have developed an anti-cancer peptide that overcomes the stubborn resistance to chemotherapy and radiation often encountered in certain blood cancers when the disease recurs following initial treatment.

The strategy could pave the way for much needed new therapies to treat relapsed and refractory blood cancers, which are difficult to cure because their cells deploy strong protein "deflector shields" to neutralize the cell death signals that chemotherapy agents used against them initially, say the researchers.

The prototype compound, called a "stapled BIM BH3 peptide," is designed to disable the cancer's defenses by hitting a family of protein targets that regulate cell death.

In proof-of-concept studies in mice with transplanted, drug-resistant leukemia tumors, the compound alone suppressed cancer growth, and when paired with other drugs, showed synergistic anti-cancer activity, say researchers led by Loren Walensky, MD, PhD, of Dana-Farber/Children's Hospital Cancer Center.

Their paper has been posted online by the Journal of Clinical Investigation and will appear in the journal's June issue. Walensky is the senior author and James LaBelle, MD, PhD, is the first author.

A cell's "fate" – when and whether it lives or dies – depends on a tug-of-war between pro-death and anti-death forces within the cell that serve as a check-and-balance system to maintain orderly growth. The system is regulated by the BCL-2 family of proteins, which contains both pro-death and pro-survival members.

When cells are no longer needed or are damaged beyond repair, the body activates pro-death BCL-2 proteins to shut down mitochondria – the power plants of the cell– resulting in an orchestrated cellular destruction known as apoptosis, or programmed cell death.

Many cell-killing cancer treatments work by triggering these "executioner proteins" to cause tumor cells to commit suicide in this fashion. But cancer cells can escape their death sentence – and even become immortal – by hyperactivating the survival arm of the family; these proteins intercept the executioner proteins and block their lethal mission.

"When cancers recur, they activate not just one type of survival protein, but many," explains Walensky, whose laboratory has extensively studied the cell-death system and makes compounds to manipulate it for research and therapeutic purposes.

"It's as if relapsed cancers 'learned' from their initial exposure to chemotherapy such that when they come back, they put up a variety of formidable barriers to apoptosis," he adds. "To reactivate cell death in refractory hematologic cancers, we need new pharmacologic strategies that broadly target these obstacles and substantially lower the apoptotic threshold."

When cancers specifically rely on one or two survival proteins, treating them with selective BCL-2 inhibitors can be very effective at eliminating the cancer cells' survival advantage. But relapsed cancers often evade such agents by deploying a battery of alternate survival proteins, so what's needed, Walensky says, are "next-generation" compounds that can block a wider range of survival proteins without jeopardizing normal tissues.

In the current research, the scientists built a chemically-reinforced peptide containing the death-activating BH3 domain of an especially potent killer protein, BIM, which is able to tightly bind with and neutralize all of the BCL-2 family survival proteins. This 'stapled' peptide, which incorporates the natural structure and properties of BIM BH3, not only disables the survival proteins, but also directly activates pro-death BCL-2 family proteins in cancer cells, making them self-destruct. Importantly, non-cancerous cells and tissues were relatively unaffected by the treatment.

"The diversity of BCL-2 family survival proteins blunts the anti-tumor activity of essentially all cancer treatments to some degree," Walensky points out. "By using Nature's solution to broad targeting of the BCL-2 pathway with a stapled BIM BH3 peptide, our goal is to eliminate cancer's protective force field and enable the arsenal of cancer treatments to do their job."

The research was supported in part by grants from the National Institutes of Health (grants 1K08CA151450, 5P01CA92625 and 5R01CA050239) and the Leukemia and Lymphoma Society.

In addition to Walensky and LaBelle, the papers other authors are Samuel Katz, MD, PhD, Brigham and Women's Hospital; Gregory Bird, PhD, Evripidis Gavathiotis, PhD, and Andrew Kung, MD, PhD, Dana-Farber/Children's Hospital Cancer Center; Michelle Stewart, Chelsea Lawrence, Jill Fisher, Marina Godes, and Kenneth Pitter, Dana-Farber.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook: facebook.com/danafarbercancerinstitute.

Bill Schaller | EurekAlert!
Further information:
http://www.dana-farber.org

Further reports about: BH3 BIM Bcl-2 Cancer blood cancer cancer cells cancer treatments cell death health services proteins

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>