Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug strategy attacks resistant leukemia and lymphoma

30.05.2012
Scientists build a synthetic peptide that overcomes cancer cells’ survival defenses

Scientists at the Dana-Farber/Children's Hospital Cancer Center have developed an anti-cancer peptide that overcomes the stubborn resistance to chemotherapy and radiation often encountered in certain blood cancers when the disease recurs following initial treatment.

The strategy could pave the way for much needed new therapies to treat relapsed and refractory blood cancers, which are difficult to cure because their cells deploy strong protein "deflector shields" to neutralize the cell death signals that chemotherapy agents used against them initially, say the researchers.

The prototype compound, called a "stapled BIM BH3 peptide," is designed to disable the cancer's defenses by hitting a family of protein targets that regulate cell death.

In proof-of-concept studies in mice with transplanted, drug-resistant leukemia tumors, the compound alone suppressed cancer growth, and when paired with other drugs, showed synergistic anti-cancer activity, say researchers led by Loren Walensky, MD, PhD, of Dana-Farber/Children's Hospital Cancer Center.

Their paper has been posted online by the Journal of Clinical Investigation and will appear in the journal's June issue. Walensky is the senior author and James LaBelle, MD, PhD, is the first author.

A cell's "fate" – when and whether it lives or dies – depends on a tug-of-war between pro-death and anti-death forces within the cell that serve as a check-and-balance system to maintain orderly growth. The system is regulated by the BCL-2 family of proteins, which contains both pro-death and pro-survival members.

When cells are no longer needed or are damaged beyond repair, the body activates pro-death BCL-2 proteins to shut down mitochondria – the power plants of the cell– resulting in an orchestrated cellular destruction known as apoptosis, or programmed cell death.

Many cell-killing cancer treatments work by triggering these "executioner proteins" to cause tumor cells to commit suicide in this fashion. But cancer cells can escape their death sentence – and even become immortal – by hyperactivating the survival arm of the family; these proteins intercept the executioner proteins and block their lethal mission.

"When cancers recur, they activate not just one type of survival protein, but many," explains Walensky, whose laboratory has extensively studied the cell-death system and makes compounds to manipulate it for research and therapeutic purposes.

"It's as if relapsed cancers 'learned' from their initial exposure to chemotherapy such that when they come back, they put up a variety of formidable barriers to apoptosis," he adds. "To reactivate cell death in refractory hematologic cancers, we need new pharmacologic strategies that broadly target these obstacles and substantially lower the apoptotic threshold."

When cancers specifically rely on one or two survival proteins, treating them with selective BCL-2 inhibitors can be very effective at eliminating the cancer cells' survival advantage. But relapsed cancers often evade such agents by deploying a battery of alternate survival proteins, so what's needed, Walensky says, are "next-generation" compounds that can block a wider range of survival proteins without jeopardizing normal tissues.

In the current research, the scientists built a chemically-reinforced peptide containing the death-activating BH3 domain of an especially potent killer protein, BIM, which is able to tightly bind with and neutralize all of the BCL-2 family survival proteins. This 'stapled' peptide, which incorporates the natural structure and properties of BIM BH3, not only disables the survival proteins, but also directly activates pro-death BCL-2 family proteins in cancer cells, making them self-destruct. Importantly, non-cancerous cells and tissues were relatively unaffected by the treatment.

"The diversity of BCL-2 family survival proteins blunts the anti-tumor activity of essentially all cancer treatments to some degree," Walensky points out. "By using Nature's solution to broad targeting of the BCL-2 pathway with a stapled BIM BH3 peptide, our goal is to eliminate cancer's protective force field and enable the arsenal of cancer treatments to do their job."

The research was supported in part by grants from the National Institutes of Health (grants 1K08CA151450, 5P01CA92625 and 5R01CA050239) and the Leukemia and Lymphoma Society.

In addition to Walensky and LaBelle, the papers other authors are Samuel Katz, MD, PhD, Brigham and Women's Hospital; Gregory Bird, PhD, Evripidis Gavathiotis, PhD, and Andrew Kung, MD, PhD, Dana-Farber/Children's Hospital Cancer Center; Michelle Stewart, Chelsea Lawrence, Jill Fisher, Marina Godes, and Kenneth Pitter, Dana-Farber.

Dana-Farber Cancer Institute (www.dana-farber.org) is a principal teaching affiliate of the Harvard Medical School and is among the leading cancer research and care centers in the United States. It is a founding member of the Dana-Farber/Harvard Cancer Center (DF/HCC), designated a comprehensive cancer center by the National Cancer Institute. It provides adult cancer care with Brigham and Women's Hospital as Dana-Farber/Brigham and Women's Cancer Center and it provides pediatric care with Children's Hospital Boston as Dana-Farber/Children's Hospital Cancer Center. Dana-Farber is the top ranked cancer center in New England, according to U.S. News & World Report, and one of the largest recipients among independent hospitals of National Cancer Institute and National Institutes of Health grant funding. Follow Dana-Farber on Twitter: @danafarber or Facebook: facebook.com/danafarbercancerinstitute.

Bill Schaller | EurekAlert!
Further information:
http://www.dana-farber.org

Further reports about: BH3 BIM Bcl-2 Cancer blood cancer cancer cells cancer treatments cell death health services proteins

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Information integration and artificial intelligence for better diagnosis and therapy decisions

24.05.2017 | Information Technology

CRTD receives 1.56 Mill. Euro BMBF-funding for retinal disease research

24.05.2017 | Awards Funding

Devils Hole: Ancient Traces of Climate History

24.05.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>