Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug manufacture: Going green with iron

01.02.2013
Safe and inexpensive iron catalysts provide a ‘greener’ alternative to typical pharmaceutical production methods

More than one-quarter of all known pharmaceuticals contain the chemical group known as amides: carboxylic acid derivatives derived from ammonia or amines. Most methods for synthesizing amides, however, are inefficient and use hazardous reagents.

New work from Anqi Chen and co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore promises to make amide chemistry more economical and sustainable than before1. The team has uncovered a way to convert aldehydes and amine salts into amides using iron(II) sulfate - a harmless, inexpensive substance as the catalyst to perform this transformation efficiently and with little waste.

Most alternative methods to produce amide molecules use expensive noble metal catalysts such as palladium and ruthenium, which are incompatible with industrial demands for cost-efficiency. Funded by a GlaxoSmithKline (GSK)–Singapore Economic Development Board (EDB) endowment on sustainable drug manufacturing, the researchers investigated a different approach known as ‘direct oxidative amidation’. This method couples an aldehyde and an amine salt in the presence of a catalyst and an oxidant, generating an amide in one step.

Nontoxic and cheap catalysts with sufficient chemical activity for amide transformation are hard to find. To identify an efficient and inexpensive catalyst, the team screened a range of iron compounds and discovered that iron(II) sulfate (see image), a supplement for anemia that costs less than a dollar per kilogram, has strong potential to catalyze amide formation from aldehydes with amine salts.

Apart from the environmentally benign iron catalyst, the transformation uses an inexpensive oxidant known as tert-butyl hydroperoxide and very cheap calcium carbonate, the main composition of limestone, as a base. By combining these inexpensive ingredients together, the researchers achieved excellent amide yields under conditions convenient for both laboratory and industrial operations.
Further experiments revealed the versatility of this amide synthesis. A range of amine salts and aldehydes with different structural and electronic features could be transformed into amides with good-to-excellent yields. Importantly, salts derived from natural amino acids such as valine and proline also underwent oxidative amidation without disrupting their chirality or ‘handedness’ - a critical structural phenomenon for drug molecules and peptides.

The team demonstrated the potential of this iron-catalyzed amidation for drug manufacturing by synthesizing the antiarrhythmic drug N-acetylprocainamide in a one-step procedure that is more efficient than previous multiple-step routes. “This environmentally benign method has significant advantages over conventional techniques,” says Chen, “and we intend to identify pharmaceutical targets where this promising method could bring about significant cost-savings and improved sustainability.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Journal information
Ghosh, S. C., Ngiam, J. S. Y., Chai, C. L. L., Seayad, A. M., Dang, T. T. & Chen, A. Iron-catalyzed efficient synthesis of amides from aldehydes and amine hydrochloride salts. Advanced Synthesis & Catalysis 354, 1407–1412 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>