Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drinking Water from the Sea

27.06.2013
Electrochemically mediated seawater desalination in microfluidic systems

A new method for the desalination of sea water has been reported by a team of American and German researchers in the journal Angewandte Chemie. In contrast to conventional methods, this technique consumes little energy and is very simple. This electrochemically mediated seawater desalination is based on a system of microchannels and a bipolar electrode.



The United Nations estimates that one-third of the global population already lives in water-stressed areas; this figure is expected to double by 2025. Salt water, on the other hand, is not in short supply. A seemingly obvious solution would be to desalinate seawater; however, this is not so easy. Processes like vaporization and subsequent condensation of the water require enormous amounts of energy. Reverse osmosis additionally requires expensive, delicate membranes that are easily fouled, and the water must undergo complex pre-treatment steps.

Developed with the support of the U.S. Department of Energy by Richard M. Crooks (The University of Texas at Austin), Prof. Ulrich Tallarek (University of Marburg, Germany), and their colleagues, the new electrochemical process works without membranes or large amounts of energy. The researchers force the water through a system of two microchannels that are about 22 µm wide, an auxiliary channel and a branched working channel, flowing on to the outlets.

The two channels are electrically connected through a bipolar electrode. The auxiliary channel is connected to a voltage source, the working channel is grounded, and a potential difference of 3.0 V is established between the two channels.

The structure of the channel system is critical: The electrode juts into the branch point of the working channel. Because of the voltage, some of the negatively charged chloride ions in the seawater are oxidized to neutral chlorine at one end of the bipolar electrode. In the narrow channel system, this creates a zone that has a lower number of negatively charged ions, which results in an electric field gradient that directs the positively charged ions in the seawater into the branching channel.

Physics requires the electroneutrality within the microchannels to be maintained, so the anions follow the positive ions into the branched channel. The water flowing through the branch is thus enriched with ions, while the water continuing through the main working channel is partially desalinated.

The amount of energy required for this new technique is so low that the system can operate with a simple battery. In contrast to reverse osmosis, it is only necessary to remove sand and sediment from the seawater. No further treatment, disinfection, or addition of chemicals is needed. A simple parallel arrangement of many microchannel systems should allow for an increase in water throughput.
About the Author
Dr. Richard M. Crooks is the Robert A. Welch Chair in Materials Chemistry at The University of Texas at Austin. His research interests in electrochemistry, microfluidics, biosensing, and catalysis.
Author: Richard M. Crooks, The University of Texas at Austin (USA), http://rcrooks.cm.utexas.edu/research/
Title: Electrochemically Mediated Seawater Desalination
Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201302577

Richard M. Crooks | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>