Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double Duty: Immune System Regulator Found to Protect Brain from Effects of Stroke

29.11.2012
A small molecule known to regulate white blood cells has a surprising second role in protecting brain cells from the deleterious effects of stroke, Johns Hopkins researchers report. The molecule, microRNA-223, affects how cells respond to the temporary loss of blood supply brought on by stroke — and thus the cells’ likelihood of suffering permanent damage.

“We set out to find a small molecule with very specific effects in the brain, one that could be the target of a future stroke treatment,” says Valina Dawson, Ph.D., a professor in the Johns Hopkins University School of Medicine’s Institute for Cell Engineering. “What we found is this molecule involved in immune response, which also acts in complex ways on the brain.

This opens up a suite of interesting questions about what microRNA-223 is doing and how, but it also presents a challenge to any therapeutic application.” A report on the discovery is published in the Nov. 13 issue of the Proceedings of the National Academy of Sciences.

RNA is best known as a go-between that shuttles genetic information from DNA and then helps produce proteins based on that information. But, Dawson explains, a decade ago researchers unearthed a completely different class of RNA: small, nimble fragments that regulate protein production. In the case of microRNA, one member of this class, that control comes from the ability to bind to RNA messenger molecules carrying genetic information, and thus prevent them from delivering their messages. “Compared with most ways of shutting genes off, this one is very quick,” Dawson notes.

Reasoning that this quick action, along with other properties, could make microRNAs a good target for therapy development, Dawson and her team searched for microRNAs that regulate brain cells’ response to oxygen deprivation.

To do that, they looked for proteins that increased in number in cells subjected to stress, and then examined how production of these proteins was regulated. For many of them, microRNA-223 played a role, Dawson says.

In most cases, the proteins regulated by microRNA-223 turned out to be involved in detecting and responding to glutamate, a common chemical signal brain cells use to communicate with each other. A stroke or other injury can lead to a dangerous excess of glutamate in the brain, as can a range of diseases, including autism and Alzheimer’s.

Because microRNA-223 is involved in regulating so many different proteins, and because it affects glutamate receptors, which themselves are involved in many different processes, the molecule’s reach turned out to be much broader than expected, says Maged M. Harraz, Ph.D., a research associate at Hopkins who led the study. “Before this experiment, we didn’t appreciate that a single microRNA could regulate so many proteins,” he explains.

This finding suggests that microRNA-223 is unlikely to become a therapeutic target in the near future unless researchers figure out how to avoid unwanted side effects, Dawson says.

Other authors on the paper are Stephen M. Eacker, Ph.D., Xueqing Wang, Ph.D., and Ted M. Dawson, M.D., Ph.D., from the Johns Hopkins University School of Medicine.

This work was supported by a grant from the National Institutes of Health (grant DA000266) and by a Maryland Stem Cell Research Fund fellowship.

Media Contacts:
Shawna Williams; 410-955-8236; shawna@jhmi.edu
Catherine Kolf; 443-287-2251; ckolf@jhmi.edu
Vanessa McMains; 410-502-9410; vmcmain1@jhmi.edu

Shawna Williams | EurekAlert!
Further information:
http://www.jhmi.edu

Further reports about: Brain Protect RNA Regulator brain cell cell death genetic information glutamate receptor stroke

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>