Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discovery about growth factor can be breakthrough for cancer research

02.09.2008
A research team at the Ludwig Institute and Uppsala University has discovered an entirely new signal path for a growth factor that is of crucial importance for the survival and growth of cancer cells.

This discovery, published in today’s issue of Nature Cell Biology, opens up an entirely new landscape for research on breast and prostate cancer, among other types.

Our cells’ ability to understand signals from various growth factors is critical for normal fetal development. The aggressiveness and capacity for survival in cancer cells are also governed by a number of growth factors, with transforming growth factor b (TGF-b) playing a prominent role. In the present study, researchers at the Ludwig Institute for Cancer Research and the Department of Genetics and Pathology, Uppsala University, have identified an entirely new signal path that is regulated by TGF-b.

“This discovery is of tremendous importance for our ability to identify what signal paths TGF-b uses to inhibit the growth of cells, or to stimulate the ability of cancer cells to survive and metastasize,” says Marene Landström, who directed the study.

TGF-b conveys its signal to the inside of the cell via receptors bound to the cell membrane in a way that is similar in the great majority of animals. Just over ten years ago, scientists discovered so-called Smad proteins, which serve as unique messengers for the active TGF-b signal. These proteins are activated when phosphate groups bind to them in a manner that is dependent on enzyme activity (of serine-threonine kinases) in the TGF-b receptors.

The new signal path that the research team has now identified is regulated quite independently of this serine-threonine kinase activity, which makes the discovery published in the article extremely interesting. The study shows that the receptors are used instead to activate another enzyme, TRAF6, which binds to the complex of receptors. TRAF6 is a so-called ubiquitin-ligase, which, when activated, places short little protein chains on itself and other proteins.

TRAF6 therefore functions as a switch that can determine what signals should be turned on in the cell. TRAF6 is used by TGF- to be specifically able to activate a kinase called TAK1, which subsequently activates other so-called stress-activated kinases, leading to cell death.

“The discovery that TGF- makes use of TRAF6 to activate signal paths in cells opens up an entirely new landscape for future research. The makes it possible to develop new treatment strategies for advanced cancers that are dependent on TGF- , for example in advanced cases of breast and prostate cancer.”

Anneli Waara | alfa
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
21.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
21.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>