Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

It All Depends on the Length

21.01.2013
Chemical functionalization of ‘toxic’ long carbon nanotubes reduces their effective length and alleviates asbestos-like pathogenicity

Carbon nanotubes resemble asbestos fibers in their form. Unfortunately, long, pure nanotubes also seem to have asbestos-like pathogenicity.



In the journal Angewandte Chemie, a European research team has now reported that chemical modifications, for example with tri(ethylene glycol), can alleviate this problem if the modification makes their surface more water-friendly and reduces the effective length of the tubes.

Due to their unique physical, chemical, and electronic properties, carbon nanotubes have become one of the most popular nanomaterials. They are used in electronics, for reinforcing plastics, and in biomedicine as nanotransporters to carry drugs into cells. For many of these applications, particularly in the area of biology, it is necessary to chemically alter the tubes by attaching molecules to their surfaces.

However, the industrial production of carbon nanotubes could bring health risks with it. Studies have shown that multi-walled nanotubes that are more than 20 µm long act like asbestos fibers, causing inflammation followed by granulomas—inflammation-induced knotlike tissue growths. This occurs because the macrophages of our immune system cannot absorb and remove the long fibers. Shorter nanotubes and those with certain surface modifications have now been shown to alleviate toxicity.

A team led by Maurizio Prato, Alberto Bianco, and Kostas Kostarelos wanted to determine what role the chemical modifications have in resolving the toxic risk from the tubes. The scientists from University College London (UK), the CNRS in Strasbourg (France), and the University of Trieste (Italy) attached either hydrocarbon chains or tri(ethylene glycol) chains as side-groups on multi-walled carbon nanotubes and compared their effects to those of unmodified tubes. The results show that the unmodified nanotubes and those with hydrocarbon chains lead to asbestos-like inflammation and granulomas in mice.

However, the carbon nanotubes with tri(ethylene glycol) chains do not.
The difference seems to be a question of aggregation/disaggregation that influences the length of the bundles: As shown by images from transmission electron and atomic force microscopies, the effective length of the tubes is reduced during the reaction that introduces the tri(ethylene glycol) chains.

The researchers believe that the modification with the tri(ethylene glycol) chain breaks apart the tubes from each other so that they interact in the body as shorter, much more hydrophilic individual fibers, whereas both the unmodified tubes and those with apolar hydrocarbons on their surfaces interact with tissue as longer bundles of individual nanotubes.

The researchers conclude that only those modifications that lead to a disentangling of the bundles can alleviate the toxicological problems.

About the Author
Alberto Bianco is Research Director at the French National Center for Scientific Research (CNRS). His research interests focus on the design and development of chemically functionalized carbon nanomaterials for biomedical applications.

Author: Alberto Bianco, CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg (France), mailto:a.bianco@ibmc-cnrs.unistra.fr

Title: Asbestos-like Pathogenicity of Long Carbon Nanotubes Can be Alleviated by Chemical Functionalization

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201207664

Alberto Bianco | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>