The new age of proteomics: An integrative vision of the cellular world
The enormous complexity of biological processes requires the use of highperformance technologies —also known as 'omics'—, that are capable of carrying out complete integrated analyses of the thousands of molecules that cells are made up of, and of studying their role in illnesses.
In the post-genomic age we find ourselves in, the comprehensive study of cellular proteins —prote-omics— acquires a new dimension, as proteins are the molecular executors of genes and, therefore, the most important pieces of the puzzle if we wish to understand more completely how cells work.
The head of the Proteomics Core Unit at the Spanish National Cancer Research Centre (CNIO), Javier Muñoz, publishes this week, alongside researchers from the University of Utrecht and the Netherlands Proteomics Centre, a revision of the latest technological advances in proteomics including improvements in the preparation of biological samples, in mass spectrometry techniques and in the bioinformatic analysis of data. The article has been published this week in the journal Nature Review Genetics.
To illustrate these advances, the authors coin the term “next-‐generation proteomics”, in reference to the new genome sequencing techniques employed by most of the scientific community. They use the example of several illustrative proteomic study cases that have brought to light key data in several biomedical research scenarios.
The authors end their revision by emphasising the main applications of these studies for clinical practice, such as the search for useful new biomarkers to improve cancer diagnosis and prognosis, or the design of personalized therapies for patients following the analysis of a reduced number of cells.
About Javier Muñoz
Javier Muñoz joined CNIO in October 2012 to lead the centre's Proteomics Core Unit. Muñoz, who joined us from the Albert Heck laboratory in Holland, is an expert in the multidisciplinary study of cancer, and focuses his CNIO research on the study of the proteome and its regulation in processes that determine cellular identity and plasticity.
Media Contact
More Information:
http://www.cnio.esAll latest news from the category: Life Sciences and Chemistry
Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.
Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.
Newest articles
World’s smallest molecular machine
… reversible sliding motion in ammonium-linked ferrocene. Researchers stabilized ferrocene molecules on a flat substrate for the first time, creating an electronically controllable sliding molecular machine. Artificial molecular machines, nanoscale…
Towards the control of chemical reactions
Overcoming one of the challenges of quantum mechanics: A major result in quantum mechanics has been achieved: for the first time, the temporal evolution of a quantum system has been…
Planets form through domino effect
New radio astronomy observations of a planetary system in the process of forming show that once the first planets form close to the central star, these planets can help shepherd…