Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Darkness Stifles Reproduction of Surface-Dwelling Fish

11.05.2011
There’s a reason to be afraid of the dark.

Fish accustomed to living near the light of the water’s surface become proverbial “fish out of water” when they move to dark environments like those found in caves, according to a study from North Carolina State University.

In research published this week in Biology Letters, a Royal Society scientific journal, NC State post-doctoral researcher Rüdiger Riesch and colleagues found that Atlantic molly females from regular surface streams have a difficult time adjusting to cavelike conditions. Surface female fish had trouble reproducing in the dark conditions, study results show. In addition, many surface-dwelling females introduced to dark conditions – surprisingly, according to the researchers – suffered from high incidents of stress-induced bacterial columnaris disease, or “fin rot,” which causes patchy lesions on the bodies of the fish.

“Permanent darkness severely hampers reproduction in surface-dwelling females,” Riesch says. “But this study also shows that the successful colonization of a subterranean habitat must have been a rare event for Atlantic mollies.”

The study was designed to provide an answer to why Atlantic mollies – their scientific name is Poecilia mexicana – living close to each other in and near a cave in southern Mexico can evolve in different ways. These population differences are normally attributed to geographic separation – like mountain ridges or some other physical barrier – but no physical barrier exists in or around the cave where these Atlantic mollies live.

In the study, the researchers placed some Atlantic mollies in cavelike total darkness while others received a “normal day” of 12 hours of light and 12 hours of darkness.

Most of the cave-dwelling fish of either sex as well as male surface-dwelling fish performed well in both light and darkness. Surface-dwelling females, however, did not breed well or maintain good health in the darkness.

One explanation for the results, Riesch says, has to do with the amount of resources fish have available for reproduction. A fish that has evolved in light has difficulties navigating and finding food in darkness, resulting in reproductive failure.

“Light and dark can completely disrupt life and reproduction for certain fish, and specific key adaptations are necessary to survive in caves,” Riesch says. “This study may be one answer to why fish of the same species living side by side can be so different.”

The research was funded by the National Science Foundation.

- kulikowski -

“Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation”

Authors: Rüdiger Riesch, North Carolina State University; Martin Plath, J.W. Goethe University; Ingo Schlupp, University of Oklahoma

Published: Online May 10, 2011, in Biology Letters

Abstract: Divergent selection through biotic factors like predation or parasitism can promote reproductive isolation even in the absence of geographical barriers. On the other hand, evidence for a role of adaptation to abiotic factors during ecological speciation in animals is scant. In particular, the role played by perpetual darkness in establishing reproductive isolation in cave animals (troglobites) remains elusive. We focused on two reproductively isolated ecotypes (surface- and cave-dwelling) of the widespread livebearer Poecilia mexicana, and raised offspring of wild-caught females to sexual maturity in a 12-month common-garden experiment. Fish were reared in light or darkness combined with high- or low-food conditions. Females, but not males, of the surface ecotype suffered from almost complete reproductive failure in darkness, especially in the low-food treatment. Furthermore, surface fish suffered from a significantly higher rate of spontaneous, stress-related infection with bacterial columnaris disease. This experimental evidence for strong selection by permanent darkness on non-adapted surface-dwelling animals adds depth to our understanding of the selective forces establishing and maintaining reproductive isolation in cave faunas.

Rudiger Riesch | EurekAlert!
Further information:
http://www.ncsu.edu

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>