Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Darkness Stifles Reproduction of Surface-Dwelling Fish

There’s a reason to be afraid of the dark.

Fish accustomed to living near the light of the water’s surface become proverbial “fish out of water” when they move to dark environments like those found in caves, according to a study from North Carolina State University.

In research published this week in Biology Letters, a Royal Society scientific journal, NC State post-doctoral researcher Rüdiger Riesch and colleagues found that Atlantic molly females from regular surface streams have a difficult time adjusting to cavelike conditions. Surface female fish had trouble reproducing in the dark conditions, study results show. In addition, many surface-dwelling females introduced to dark conditions – surprisingly, according to the researchers – suffered from high incidents of stress-induced bacterial columnaris disease, or “fin rot,” which causes patchy lesions on the bodies of the fish.

“Permanent darkness severely hampers reproduction in surface-dwelling females,” Riesch says. “But this study also shows that the successful colonization of a subterranean habitat must have been a rare event for Atlantic mollies.”

The study was designed to provide an answer to why Atlantic mollies – their scientific name is Poecilia mexicana – living close to each other in and near a cave in southern Mexico can evolve in different ways. These population differences are normally attributed to geographic separation – like mountain ridges or some other physical barrier – but no physical barrier exists in or around the cave where these Atlantic mollies live.

In the study, the researchers placed some Atlantic mollies in cavelike total darkness while others received a “normal day” of 12 hours of light and 12 hours of darkness.

Most of the cave-dwelling fish of either sex as well as male surface-dwelling fish performed well in both light and darkness. Surface-dwelling females, however, did not breed well or maintain good health in the darkness.

One explanation for the results, Riesch says, has to do with the amount of resources fish have available for reproduction. A fish that has evolved in light has difficulties navigating and finding food in darkness, resulting in reproductive failure.

“Light and dark can completely disrupt life and reproduction for certain fish, and specific key adaptations are necessary to survive in caves,” Riesch says. “This study may be one answer to why fish of the same species living side by side can be so different.”

The research was funded by the National Science Foundation.

- kulikowski -

“Speciation in caves: experimental evidence that permanent darkness promotes reproductive isolation”

Authors: Rüdiger Riesch, North Carolina State University; Martin Plath, J.W. Goethe University; Ingo Schlupp, University of Oklahoma

Published: Online May 10, 2011, in Biology Letters

Abstract: Divergent selection through biotic factors like predation or parasitism can promote reproductive isolation even in the absence of geographical barriers. On the other hand, evidence for a role of adaptation to abiotic factors during ecological speciation in animals is scant. In particular, the role played by perpetual darkness in establishing reproductive isolation in cave animals (troglobites) remains elusive. We focused on two reproductively isolated ecotypes (surface- and cave-dwelling) of the widespread livebearer Poecilia mexicana, and raised offspring of wild-caught females to sexual maturity in a 12-month common-garden experiment. Fish were reared in light or darkness combined with high- or low-food conditions. Females, but not males, of the surface ecotype suffered from almost complete reproductive failure in darkness, especially in the low-food treatment. Furthermore, surface fish suffered from a significantly higher rate of spontaneous, stress-related infection with bacterial columnaris disease. This experimental evidence for strong selection by permanent darkness on non-adapted surface-dwelling animals adds depth to our understanding of the selective forces establishing and maintaining reproductive isolation in cave faunas.

Rudiger Riesch | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>